Applied Modeling and Quantitative Methods
Self-Organizing Maps and Galaxy Evolution
Artificial Neural Networks (ANN) have been applied to many areas of research. These techniques use a series of object attributes and can be trained to recognize different classes of objects. The Self-Organizing Map (SOM) is an unsupervised machine learning technique which has been shown to be successful in the mapping of high-dimensional data into a 2D representation referred to as a map. These maps are easier to interpret and aid in the classification of data. In this work, the existing algorithms for the SOM have been extended to generate 3D maps. The higher dimensionality of the map provides for more information to be made available to the interpretation of classifications. The effectiveness of the implementation was verified using three separate standard datasets. Results from these investigations supported the expectation that a 3D SOM would result in a more effective classifier.
The 3D SOM algorithm was then applied to an analysis of galaxy morphology classifications. It is postulated that the morphology of a galaxy relates directly to how it will evolve over time. In this work, the Spectral Energy Distribution (SED) will be used as a source for galaxy attributes. The SED data was extracted from the NASA Extragalactic Database (NED). The data was grouped into sample sets of matching frequencies and the 3D SOM application was applied as a morphological classifier. It was shown that the SOMs created were effective as an unsupervised machine learning technique to classify galaxies based solely on their SED. Morphological predictions for a number of galaxies were shown to be in agreement with classifications obtained from new observations in NED.
Author Keywords: Galaxy Morphology, Multi-wavelength, parallel, Self-Organizing Maps
Modelling Depressive Symptoms in Emerging Adulthood: Intergenerational Risk and the Protective Role of Trait Emotional Intelligence
Depression during the transition into adulthood is a growing mental health concern, with overwhelming evidence linking the developmental risk for depressive symptoms with maternal depression. In addition, there is a lack of research on the protective role of socioemotional competencies in this context. This study examines independent and joint effects of maternal depression and trait emotional intelligence (TEI) on the longitudinal trajectory of depressive symptoms during emerging adulthood. A series of latent growth models was applied to three biennial cycles of data from a nationally representative sample (N=933) from the Canadian National Longitudinal Survey of Children and Youth. We assessed the trajectory of self-reported depressive symptoms from age 20 to 24 years, as well as whether it was moderated by maternal depression at age 10 to 11 and TEI at age 20, separately by gender. The results indicated that mean levels of depression declined during the emerging adulthood in females, but remained relatively stable in males. Maternal depressive symptoms significantly positively predicted depressive symptoms across the entire emerging adulthood in females, but only at age 20-21 for males. In addition, likelihood of developing depressive symptoms was attenuated by higher global TEI in both females and males, and additionally by higher interpersonal skills in males. Our findings suggest that interventions for depressive symptoms in emerging adulthood should consider development of socioemotional competencies.
Author Keywords: Depression, Depressive Symptoms, Emerging Adulthood, Intergenerational Risk, Longitudinal, Trait Emotional Intelligence