Graduate Theses & Dissertations

Pages

Sex-Specific Graphs
Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life historical traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have investigated the potential effect of sex-specific functional connectivity on genetic structure. The recent uses of Graph Theory in landscape genetics have demonstrated network capacities to describe complex system behaviors where network topology intuitively represents genetic interaction among sub-units. By implementing a sex-specific network approach, our results suggest that Sex-Specific Graphs (SSG) are sensitive to differential male and female dispersal dynamics of a fisher (Martes pennanti) metapopulation in southern Ontario. Our analyses based on SSG topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population-level, could be partitioned among sex-specific strata. We found that female connectivity was negatively affected by snow depth, while being neutral for males. Our findings underlined the potential of conducting sex-specific analysis by identifying landscape elements that promotes or impedes functional connectivity of wildlife populations, which sometimes remains cryptic when studied at the population level. We propose that SSG approach would be applicable to other vagile species where differential sex-specific processes are expected to occur. Author Keywords: genetic structure, Landscape Genetics, Martes pennanti, Population Graph, sex-biased dispersal, Sex-Specific Graphs
Effects of Hydroelectric Corridors on the Distribution of Female Caribou (Rangifer tarandus) on the Island of Newfoundland
A species of concern is caribou (Rangifer tarandus), a species in decline across most of the circumpolar North, including the island of Newfoundland. Resource exploitation across caribou ranges is projected to accelerate in the coming decades as oil extraction, roads, forest harvesting, and mining encroach upon their habitat. Hydroelectric corridors, in particular, are anticipated to expand significantly. The effects of these linear developments on caribou habitat remain unclear. I capitalized on an existing dataset of nearly 700 radio‐tracked female caribou, 1980‐2011, to determine the long‐term effects of hydroelectric corridors on their seasonal distributions. Using an island-wide landcover map, I tested for preference or avoidance hydroelectric corridors in each of 4 seasons using the Euclidean Distance habitat selection technique at the extent of the population ranges (broad scale) for each decade (1980s, 1990s, 2000s). I also examined the distribution of caribou ≤10 km and ≤20 km from corridors (narrow scale) for five herds. At the broad scale, the response was highly variable. Female caribou were most likely to avoid corridors during the 1980s, but they often exhibited little aversion, even preference for corridors, particularly in the 1990s and 2000s. Hydroelectric corridors, therefore, did not appear to be limiting at this scale. I surmise that these long-term shifts reflect the heightened density-dependent food limitation for Newfoundland caribou. At the narrow scale, avoidance of corridors was common – typically, a 50% reduction in use within 2-5 km of the corridor. Consistent with the broad scale, caribou exhibited the strongest tendency for avoidance in the 1980s compared to subsequent decades. Understanding space-use remains central to the study of caribou ecology. Hydroelectric lines in Newfoundland tended to coincide with other anthropogenic features. Cumulative effects must be considered to understand the full range of effects by human developments on caribou. Author Keywords: Caribou, distribution, habitat, hydroelectric, Newfoundland, Rangifer tarandus
Size and fluorescence properties of allochthonous dissolved organic matter
Dissolved organic matter (DOM) is a mixture of molecules with dynamic structure and composition that are ubiquitous in aquatic systems. DOM has several important functions in both natural and engineered systems, such as supporting microorganisms, governing the toxicity of metals and other pollutants, and controlling the fate of dissolved carbon. The structure and composition of DOM determine its reactivity, and hence its effectiveness in these ecosystem functions. While the structure, composition, and reactivity of riverine and marine DOM have been previously investigated, those of allochthonous DOM collected prior to exposure to microbes and sunlight have received scant attention. The following dissertation constitutes the first in-depth study of the structure, composition, and reactivity of allochthonous DOM at its point of origin (i.e. leaf leachates, LLDOM), as detected by measuring its size and optical properties. Concomitantly, novel chemometric methods were developed to interpret size-resolved data obtained using asymmetrical flow field-flow fractionation, including spectral deconvolution and the application of machine learning algorithms such as self-organizing maps to fluorescence data using a dataset of more than 1000 fluorescence excitation-emission matrices. The size and fluorescence properties of LLDOM are highly distinct. Indeed, LLDOM was correctly classified as one of 13 species/sources with 92.5% accuracy based on its fluorescence composition, and LLDOM was distinguished from riverine DOM sampled from eight different rivers with 98.3% accuracy. Additionally, both fluorescence and size properties were effective conservative tracers of DOC contribution in pH-controlled mixtures of leaf leachates and riverine DOM over two weeks. However, the structure of LLDOM responded differently to pH changes for leaves/needles from different tree species, and for older needles. Structural changes were non-reversible. Copper-binding strength (log K) differed for the different fluorescent components of DOM in a single allochthonous source by more than an order of magnitude (4.73 compared to 6.11). Biotransformation preferentially removed protein/polyphenol-like fluorescence and altered copper-binding parameters: log K increased from 4.7 to 5.5 for one fluorescent component measured by fluorescence quenching, but decreased from 7.2 to 5.8 for the overall DOM, as measured using voltammetry. The complexing capacity of DOM increased in response to biotransformation for both fluorescent and total DOM. The relationship between fluorescence and size properties was consistent for fresh allochthonous DOM, but differed in aged material. Since the size and fluorescence properties of LLDOM are strikingly different from those of riverine DOM, deeper investigation into transformative pathways and mixing processes is required to elucidate the contribution of riparian plant species to DOM signatures in rivers. Author Keywords: Analytical chemistry, Chemometrics, Dissolved organic matter (DOM), Field-flow fractionation, Fluorescence spectroscopy, Parallel factor analysis (PARAFAC)
Comparing Biological Responses to Contaminants in Darters (Etheostoma spp.) Collected from Rural and Urban Regions of the Grand River Watershed, Ontario
Urban and agricultural activities may introduce chemical stressors, including contaminants of emerging concern (CECs) and current use pesticides (CUPs) into riverine systems. The objective of this study was to determine if fish collected from sites in a river show biomarkers of exposure to these classes of contaminants, and if the biomarker patterns vary in fish collected from urbanized and agricultural sites. The watershed selected for this study was the Grand River in southern Ontario, which transitions from areas dominated by agricultural land use in the north to highly urbanized locations in the southern part of the watershed. Rainbow darters (Etheostoma caerluem) and fantail darters (Etheostoma flabellare) were collected from the Grand River in June, 2014 for biomarker analysis from two urbanized sites and three agricultural sites (n=20 per site). Over the same period of time, Polar Organic Chemical Integrative Samplers (POCIS) were deployed for 2 weeks at each site to monitor for the presence of CUPs and CECs. The amounts of the target compounds accumulated on POCIS, determined using LC-MS/MS were used to estimate the time weighted average concentrations of the contaminants at each site. Data on the liver somatic index for darters indicate site-specific differences in this condition factor (p<0.05). Significant differences in the concentrations of thiobarbituric acid reactive substances (TBARS) in gill tissue (p<0.05) indicate differences in oxidative stress in fish collected from the various sites. Measured concentrations of ethoxyresorufin-O-deethylase (EROD) in liver tissue were significantly different between sites (p<0.05), indicating differences in CYP1A metabolic activity. Finally, acetylcholinesterase (AChE) activity in brain tissue was significantly different between fish from rural and urban sites (p<0.05). The analysis of these biomarkers indicates that fish may be experiencing different levels of biological stress related to different land uses. These data may be useful in developing mitigation strategies to reduce impacts on fish and other aquatic organisms in the watershed. Author Keywords: AChE, Biomarker, Darter, EROD, POCIS, TBARS
Nitrogen and phosphorus bioavailability in soil amended with alkaline stabilized biosolids
Agricultural land application of biosolids recycles nutrients and organic matter to the soil, however the effect of treatment process on nutrient availability requires further research for better nutrient management. This study examined the bioavailability of nitrogen (N) and phosphorus (P) in alkaline treated biosolids (TB) when amended into three different soils. Despite a 45% reduction in total N and P content during treatment, TB did not show reduced N or P availability compared with sewage sludge (SS). Results of a corn growth experiment and a soil incubation showed that TB amendment resulted in little mineralization and generally net immobilization of N, and 2% total P availability to corn from TB. Results suggest that TB are not a source of bioavailable N in the short-term, but can be used as a P amendment for corn. Nutrient management of agricultural land receiving these materials should focus on P added and liming properties. Author Keywords: Alkaline treated biosolids, Nitrogen, Phosphorus, Soil fertility
Assessment of the impacts of noise and vessel traffic on the distribution, abundance and density of Chinese humpback dolphins (Sousa chinensis chinensis) in the waters of Hong Kong
Marine mammals with near-shore distributions are susceptible to human-related recreational and commercial disturbances, particularly near densely populated and industrialized coastal areas. A population of over 2,500 Chinese humpback dolphins (Sousa chinensis chinensis) occupies the Pearl River Estuary in southern China. A part of this population uses Hong Kong’s waters off of Lantau Island, where they are subjected to a number of anthropogenic threats, including vessel disturbance, fisheries interactions, and boat-based tourism. Previous research has shown that the abundance of this subspecies in Hong Kong’s waters has declined about 60% since 2003. Using a combination of acoustic recordings, dolphin distribution and abundance data, and vessel traffic information I found that: 1) Four types of vessels common to the waters on Hong Kong generate noise that is audible to Sousa chinensis chinensis; 2) The spatial distribution of underwater noise in Hong Kong’s waters does not significantly vary among the six sites sampled; 3) High-speed ferry traffic and passenger volume has increased dramatically during the study period; 4) There has been a significant decline in dolphin density in areas within and near vessel traffic; and 5) Dolphins are most at risk of vessel collisions and being exposed to vessel noise near Fan Lau and within the Urmston Road waterway just northeast of the Sha Chau and Lung Kwu Chau Marine Park . These results can inform future acoustic studies on this species and guide conservation and management efforts in Hong Kong. Author Keywords: Human impacts, Humpback dolphin, Management, Noise, Sousa chinensis chinensis, Vessel traffic
Natural antisense transcripts to nucleus-encoded mitochondrial genes are linked to Ustilago maydis teliospore dormancy
Ustilago maydis is a basidiomycete smut fungus and the causal agent of common smut of corn. Disease progression and fungal development in this pathogen occur in planta, terminating in the production of dormant teliospores. Dormant spores of many fungi are characterized by reduced metabolic activity, which is restored during spore germination. The transition out of dormancy requires the rapid translation of stored mRNAs, which may be stabilized through natural antisense transcript (NAT)-mediated mechanisms. Transcript analysis revealed that as-ssm1, a NAT to the mitochondrial seryl-tRNA synthetase (ssm1), is detected in the dormant teliospore and absent in haploid cells. Disruption of ssm1 leads to cell lysis, indicating it is essential for cellular viability. Presented data supports the hypothesis that as-ssm1 has a role in facilitating teliospore dormancy through stabilizing ssm1 transcripts, which reduces mitochondrial function. as-ssm1 expression during in planta development begins 10 days post-infection, coinciding with the first appearance of dormant teliospores. To assess the impact of as-ssm1 expression on cell division, virulence and mitochondrial function, as-ssm1 was ectopically expressed in haploid cells, leading to increased ssm1 transcript levels and the formation of double-stranded RNA. These expression mutants are characterized by attenuated growth rate, virulence, mitochondrial membrane potential and oxygen consumption. Together, these findings support a role for NATs in moderating mitochondrial function during the onset of teliospore dormancy. Author Keywords: Dormant teliospore, Mitochondria, mRNA stability, Natural antisense transcripts, Non-coding RNA, Ustilago maydis
Legume species, nitrogen rate and arbuscular mycorrhizal fungi inoculation effects on crop biomass and nitrogen requirement in a corn-legume system
Interseeding legume cover crops in grain corn may improve the environmental sustainability of corn production system in Southern Ontario. This study aimed to assess the effects of legume species, nitrogen (N) fertilizer rate and arbuscular mycorrhizal fungi (AMF) inoculation on biomass and N requirement in a corn-legume system. Corn was grown with red clover (RCl), microclover (MCl), hairy vetch (HV), or beans at 10 and 80 kg N ha-1 rates with and without AMF inoculation in a greenhouse for 7 weeks. Corn dry matter (DM) and N uptake were reduced by beans and HV (average 35%) compared with control; however, the DM for beans and HV was 7 and 3 times higher than RCl and MCl, respectively. The N2 fixation ability was similar among legume species and no significant N transfer from legume was detected. Overall, species collection was critical to the success of incorporating legumes into grain corn production. Author Keywords: Arbuscular mycorrhizal fungi, corn, legume cover crop, nitrogen
Nutrient Metabolism of an Aquatic Invertebrate and its Importance to Ecology
Aquatic consumers frequently face nutritional limitation, caused in part, by imbalances between the nutrients supplied by primary producers and the metabolic demands of the consumers. These nutritional imbalances alter many ecological processes including consumer life-history traits, population dynamics, and food web properties. Given the important ecological role of organismal nutrition, there is a need to have precise and specific indicators of nutritional stress in animals. Despite this need, current methods used to study nutrition are unable to distinguish between different types of nutritional limitation. Here I studied nutritional metabolism in the freshwater zooplankter, Daphnia. A greater understanding of nutritional metabolism would allow for the development of dietary bio-indicators that could improve the study of the nutritional ecology of animal consumers. Specifically, I addressed the question: What affects the biochemical composition of a generalist aquatic consumer? My overall hypothesis was that the quantity and quality of the diet affects the biochemical composition in a nutrient specific manner. To test this hypothesis, I examined various response variables involved in nutrient metabolism such as alkaline phosphatase activity, whole metabolome, and free amino acid composition. For each response variable, I grew Daphnia under various nutritional stressors and determined if responses are nutrient specific or are a general stress response. I found the current method of measuring alkaline phosphatase was not a phosphorus specific indicator, as activity increased in all nutrient stressed treatments. Analyzing the whole metabolome resulted in nutritional stressors being separated in multivariate space, with many identified metabolites being significantly different from nutrient rich Daphnia. Upon further examination the daphnids free amino acids profiles are caused by differences between the supply of amino acids from the algae and the demand within the Daphnia. These differences in supply and demand resulted in the ability to classify the nutritional status of Daphnia with the use of discriminant analysis, a classification multivariate model. In addition to a deeper understanding and advanced knowledge of the physiological changes caused by nutrient limitation, this research has provided strong evidence for the application of nutritional biomarkers/profiles to identified the nutritional status of Daphnia. Author Keywords: Bio-indictor, Ecological stoichiometry, Metabolism, Nutritional limitation, Nutritional status
Comparison of the Optical Properties of Stratiotes aloids and the Local Plant Community
As part of a mandate to control the spread of Stratiotes aloides (WS; water soldier) in the Trent Severn Waterway, the Ministry of Natural Resources (MNR) created a management plan to eradicate WS. However, one of the biggest challenges in eradicating WS or any invasive aquatic plant is the ability to estimate the extent of its spread and detect new populations. While current detection methods can provide acceptable detection, these methods often require extensive time and effort. The purpose of this thesis was to assess the use optical properties of WS and WS exudates for detection, in order to improve on current detection methods. The optical properties of WS were sampled at three different sites during three different seasons (spring, summer, and fall) by a) randomly sampling tissue from WS and the local plant community at each site, and recording the reflectance properties in a laboratory setting b) collecting dissolved organic matter (DOM) samples from plant incubations and river water in the field. Significant differences in the reflectance properties of WS were observed among samples from different sites and different sampling times; however, changes in fluorescence properties were only seasonal. Despite spatial differences in WS reflectance; WS was detectable using both hyperspectral and multispectral reflectance. When hyperspectral reflectance was used, significant differences between WS and the local plant community were found in June using two bands (i.e. bands 525 and 535, R 2 = 0.46 and 0.48, respectively). Whereas multispectral reflectance was significant different in October using the coastal and blue band. While WS produced a unique signal using both reflectance types, multispectral reflectance had a greater potential for detection. Its greater potential for detection was due to the reduced noise produced by background optical properties in October in comparison to June. DOM derived from WS was also characterized and compared with whole-river DOM samples in order to find unique markers for WS exudates in river samples. While similarities in DOM concentrations of WS exudates to Trent River water limited the ability to detect WS using compositional data, the ratio of C4/C5 components were compared in order to find components that were proportionally similar. Based on the results of this study multispectral and fluorescence techniques are better suited for the detection of a unique WS signature. The results derived from this work are intended to have practical applications in plant management and monitoring, DOM tracing, as well as remote sensing. Author Keywords: Dissolved organic matter, Hyperspectral reflectance, Invasive species management, Multispectral reflectance, PARAFAC, Stratiotes aloides
Electrochemical Characterization of Giardia Intestinalis Cytochromes b5
Giardia intestinalis is a protozoan parasite that causes waterborne diarrheal disease in animals and humans. It is an unusual eukaryote as it lacks the capacity for heme biosynthesis; nonetheless it encodes heme proteins, including three cytochrome b5 isotypes (gCYTB5s) of similar size. Homology modelling of their structures predicts increased heme pocket polarity compared to mammalian isotypes, which would favour the oxidized state and lower their reduction potentials (E°’). This was confirmed by spectroelectrochemical experiments, which measured E°’ of -171 mV, -140 mV and -157 mV for gCYTB5-I, II, III respectively, compared to +7 mV for bovine microsomal cytochrome b5. To explore the influence of heme pocket polarity in more detail, five gCYTB5-I mutants in which polar residues were replaced by nonpolar residues at one of three positions were investigated. While these substitutions all increased the reduction potential, replacement of a conserved tyrosine residue at position-61 with phenylalanine had the most significant effect, raising E°’ by 106 mV. This tyrosine residue occurs in all gCYTB5s and is likely the greatest contributor to their low reduction potentials. Finally, complementary substitutions were made into a bovine microsomal cytochrome b5 triple mutant to lower its reduction potential. These not only lowered the E°’ by more than 140 mV but also weakened the interaction of heme with the protein. The lower reduction potentials of the gCYTB5s may indicate that these proteins have different roles from their more well-known mammalian counterparts. Author Keywords:
Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin
The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine’s role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket. Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Environmental and Life Sciences
  • (-) ≠ Physiology
  • (-) ≠ Wilson
  • (-) ≠ Cellular biology
  • (-) ≠ Anderson, Alexandra Marie

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/12