Graduate Theses & Dissertations

Pages

Evaluating the Effects of Habitat Loss and Fragmentation on Canada Lynx
Current major issues in conservation biology include habitat loss, fragmentation and population over-exploitation. Animals can respond to landscape change through behavioural flexibility, allowing individuals to persist in disturbed landscapes. Individual behaviour has only recently been explicitly included in population models. Carnivores may be sensitive to changing landscapes due to their wide-ranging behaviour, low densities and reproductive rates. Canada lynx (Lynx canadensis) is a primary predator of snowshoe hares (Lepus americanus). Both species range throughout the boreal forests of North America, however lynx are declining in the southern range periphery. In this dissertation, I developed new insights into the effects of habitat loss and fragmentation on lynx. In Chapter 2, I created a habitat suitability model for lynx in Ontario and examined occurrence patterns across 2 regions to determine if habitat selection is flexible when different amounts of habitat are available. Although lynx avoided areas with <30% suitable habitat where suitable land cover is abundant, I found that they have flexible habitat selection patterns where suitable land cover is rare and occurred in low habitat areas. In Chapter 3, I investigated the effects of dispersal plasticity on occupancy patterns using a spatially explicit individual-based model. I showed that flexible dispersers, capable of crossing inhospitable matrix, had higher densities and a lower risk of patch extinction. In contrast, inflexible dispersers (unable to cross inhospitable matrix), were most limited by landscape connectivity, resulting in a high extinction risk in isolated patches. I developed three predictions to be explored with empirical data; (1) dispersal plasticity affects estimates of functional connectivity; (2) variation in dispersal behaviour increases the resilience of patchy populations; and (3) dispersal behaviour promotes non-random distribution of phenotypes. Finally, in Chapter 4, I examined the consequences of anthropogenic harvest on naturally cycling populations. I found that harvest mortality can exacerbate the effects of habitat fragmentation, especially when lynx densities are low. Dynamic harvest regimes maintained lynx densities and cycle dynamics while reducing the risk of population extinction. These results suggest that lynx display some flexibility to changing landscapes and that the metapopulation structure is more resilient to increasing habitat loss and fragmentation than previously understood. Future studies should focus on determining a threshold of connectivity necessary for population persistence and examining the effects of habitat loss on the fecundity of lynx. Author Keywords: Fluctuating Populations, Habitat Fragmentation, Landscape Ecology, Occupancy Dynamics, Population Ecology, Spatially Explicit Population Models
EVALUATION OF HAYFIELD MANAGEMENT STRATEGIES AND BOBOLINK TERRITORIAL HABITAT IN SOUTHERN ONTARIO
I implemented three hayfield management regimens in southern Ontario (a typical schedule at the farmer`s discretion, a delayed first harvest after July 14, and an early first harvest before June 1 with 65 days before second harvest), and evaluated the costs/benefits to farmers regarding hay quality and feasibility, and to Bobolinks (Dolichonyx oryzivorus) regarding reproductive activity and phenology. Typical management resulted in little to no Bobolink reproductive success, and early harvested sites were not (re)colonized. On delayed harvest sites Bobolinks experienced high reproductive success, but hay quality fell below ideal protein levels for most cattle before harvest. I also examined the habitat features Bobolinks use as the basis for establishing territories and associations between Bobolink territory size and habitat quality. I compared vegetation structure, patch size, and prey abundance between small and large territories. Small territories typically occurred on smaller fields with more preferred vegetation characteristics and greater prey abundance. Author Keywords: agro-ecosystem, Bobolink, Dolichonyx oryzivorus, grassland birds, hayfield management
Demography and habitat selection of Newfoundland caribou
The objective of this thesis is to better understand the demography and habitat selection of Newfoundland caribou. Chapter 1 provides a general introduction of elements of population ecology and behavioural ecology discussed in the thesis. In Chapter 2, I examine the causes of long-term fluctuations among caribou herds. My findings indicate that winter severity and density-dependent degradation of summer range quality offer partial explanations for the observed patterns of population change. In Chapter 3, I investigate the influence of climate, predation and density-dependence on cause-specific neonate survival. I found that when caribou populations are in a period of increase, predation from coyotes and bears is most strongly influenced by the abiotic conditions that precede calving. However, when populations begin to decline, weather conditions during calving also influenced survival. I build on this analysis in Chapter 4 by determining the influence of climate change on the interplay between predation risk and neonate survival. I found that the relative equilibrium between bears and coyotes may not persist in the future as risk from coyotes could increase due to climate change. In Chapter 5, I investigate the relationships in niche overlap between caribou and their predators and how this may influence differential predation risk by affecting encounter rates. For coyotes, seasonal changes in niche overlap mirrored variation in caribou calf risk, but had less association with the rate of encounter with calves. In contrast, changes in niche overlap during the calving season for black bears had little association with these parameters. In Chapter 6, I examine broad-level habitat selection of caribou to study trade-offs between predator avoidance and foraging during the calving season. The results suggest that caribou movements are oriented towards increased access to foraging and the reduction of encounter risk with bears, and to a lesser extent, coyotes. Finally, I synthesize the major findings from this thesis and their relevance to caribou conservation in Chapter 7, to infer that Newfoundland caribou decline is ultimately driven by extrinsic and intrinsic elements related to density-dependence. Reduction in neonate survival emerged from nutritionally-stressed caribou females producing calves with lower survival. Author Keywords: Behavioural ecology, Black bear (Ursus americanus), Coyote (Canis latrans), Population ecology, Predator-prey interactions, Woodland caribou (Rangifer tarandus)

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Morrison
  • (-) ≠ Kallikragas
  • (-) = Conservation biology
  • (-) ≠ Angoh, Siow Yan Jennifer
  • (-) ≠ Budd, Cara Emily
  • (-) ≠ Bertrand, Philip

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/16

Degree Discipline