Graduate Theses & Dissertations

Pages

Investigating Ecological Niche Differentiation Among Wild Candids Experiencing Hybridization in Eastern North America
Currently there are large areas of the North American landscape that are occupied by Canis spp. hybrids of several varieties, leading to the logical question as to the genetic structure and ecological function of Canis populations across the continent, and to what extent hybrids reflect contemporary landscapes. This study illustrated patterns of niche differentiation between parental canid species and their hybrids using individual high quality genetic profile and species distribution models to support the intermediate phenotype hypothesis. In general, hybrids demonstrated an intermediate habitat suitability compared to its parental species, across most environmental variables used. A similar trend was observed in the niche metric analysis, where we found that hybrids exhibit intermediate niche breadth, with eastern coyotes and eastern wolves exhibiting the broader and narrower niche, respectively. Our results demonstrate that the intermediate phenotype hypothesis is supported even at a large scale and when involving highly mobile large mammal species. Author Keywords: canid, ecological niche modelling, hybridization, intermediate phenotype, microsatellite genotype, niche differentiation
Cemeteries and Hunter-Gatherer Land-Use Patterns
The principle aim of this thesis is to evaluate the applicability of the Goldstein/Kelly hypothesis, which proposes that hunter-gatherer cemeteries emerge as a product of resource competition, and function to confirm and maintain ancestral ties to critical resources. My evaluation centres on a case study of the earliest known cemeteries of the middle Trent Valley, Ontario. To determine whether these predictions are true, I investigated the ecological context of local wetland-based foraging, and undertook a locational analysis to determine if the placement of cemeteries correlates with environmental characteristics that reflect the presence of valuable resources that are unique to these locations. The analysis reveals that ancient cemeteries in the middle Trent Valley were located near seasonal riparian wetlands, possibly to secure wild rice and the variety of fauna it attracts. Through the integration of paleoecological, archaeological, and ethnographic information for the region, this research finds support for the Goldstein/Kelly hypothesis. Author Keywords: Cemeteries, Hunter-Gatherers, Landscape Archaeology, Late Archaic, Middle Woodland, Ontario
Social thermoregulation and potential for heterothermy
Northern and southern flying squirrels (Glaucomys sabrinus and G. volans, respectively) are experiencing a climate change induced increase in range overlap, resulting in recent hybridization. We investigated the occurrence of heterospecific communal nesting, a potential facilitator of hybridization, and aimed to confirm the presence of torpor, a potential barrier to hybridization, in flying squirrels. In wild-caught captive squirrels, we conducted a paired nest choice experiment and found that heterospecific nesting did occur, but in a lower frequency than conspecific nesting. Ambient temperature did not affect the frequency of grouped nesting. We attempted to induce torpor in flying squirrels in a laboratory through cold exposure while measuring metabolic rate and body temperature. Strong evidence of torpor was not observed, and metabolic rate remained unchanged with season. We conclude that torpor is not a barrier to hybridization in flying squirrels, but resistance to heterospecific nesting may indicate the existence of one. Author Keywords: heterospecific group, hybridization, northern flying squirrel, social thermoregulation, southern flying squirrel, torpor
Long-Term Population Dynamics of an Unexploited Lacustrine Brook Trout (Salvelinus fontinalis) Population
Long-term studies of demographic processes such as survival and abundance conducted in unexploited systems provide unique insight into the natural population ecology of fish, but are rarely available. I used historical tagging records of a sanctuary population of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario to investigate long-term population dynamics in an unexploited population. Adult brook trout in Mykiss Lake (23.5ha) were surveyed and tagged biannually (May and October) between 1990 and 2004. Open-population capture-mark-recapture models were used to test the importance of time, size, sex and season on estimates of apparent survival and abundance. Seasonal population growth and recruitment were estimated and compared with large-scale climate indices. Time-dependent survival and abundance estimates fluctuated, with distinct periods of increase. Population growth and recruitment were positively correlated with summer NAO and ENSO values, whereas survival was negatively correlated. Seasonally, larger individuals experienced higher apparent survival during winter and decreased survival during summer. These findings provide valuable insights into the natural demography of unexploited brook trout populations, and should help inform sustainable management of inland fisheries. Author Keywords: capture-mark-recapture, long-term, population dynamics, Salvelinus fontinalis, seasonal variation, survival
Regional differences in the whistles of Australasian humpback dolphins (genus Sousa)
Most delphinids produce narrowband frequency-modulated whistles with a high level of plasticity to communicate with conspecifics. It is important to understand geographic variation in whistles as signal variation in other taxa has provided insight into the dispersal capabilities, genetic divergence and isolation among groups, and adaptation to ecological conditions. I investigated whistle variation of Indo-Pacific humpback dolphins (Sousa chinensis chinensis), Taiwanese humpback dolphins (S. c. taiwanensis) and Australian humpback dolphins (S. sahulensis) to test whether differences in whistles support the hypotheses of population structure, regional and species differences in the genus Sousa, which were based on morphological and genetic data. I also investigated important factors that may contribute to local distinctiveness in whistles including behavioural state, group size, and the influence of vessel noise. Multivariate analyses of seven acoustic variables supported the hypotheses of population structure, regional and species differences. Acoustic diversification between groups is likely influenced by behaviour and social contexts of whistles, and environmental noise. The use of sound to identify discrete groups of humpback dolphins may be important in future studies where genetic and morphological studies may not reveal recent differentiation or are difficult to conduct. Author Keywords: Bioacoustics, Cetacean, Geographic variation, Population biology, Sousa, Whistle characteristics
Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)
The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism’s ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes. Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion
Sex-Specific Graphs
Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life historical traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have investigated the potential effect of sex-specific functional connectivity on genetic structure. The recent uses of Graph Theory in landscape genetics have demonstrated network capacities to describe complex system behaviors where network topology intuitively represents genetic interaction among sub-units. By implementing a sex-specific network approach, our results suggest that Sex-Specific Graphs (SSG) are sensitive to differential male and female dispersal dynamics of a fisher (Martes pennanti) metapopulation in southern Ontario. Our analyses based on SSG topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population-level, could be partitioned among sex-specific strata. We found that female connectivity was negatively affected by snow depth, while being neutral for males. Our findings underlined the potential of conducting sex-specific analysis by identifying landscape elements that promotes or impedes functional connectivity of wildlife populations, which sometimes remains cryptic when studied at the population level. We propose that SSG approach would be applicable to other vagile species where differential sex-specific processes are expected to occur. Author Keywords: genetic structure, Landscape Genetics, Martes pennanti, Population Graph, sex-biased dispersal, Sex-Specific Graphs
Effects of Hydroelectric Corridors on the Distribution of Female Caribou (Rangifer tarandus) on the Island of Newfoundland
A species of concern is caribou (Rangifer tarandus), a species in decline across most of the circumpolar North, including the island of Newfoundland. Resource exploitation across caribou ranges is projected to accelerate in the coming decades as oil extraction, roads, forest harvesting, and mining encroach upon their habitat. Hydroelectric corridors, in particular, are anticipated to expand significantly. The effects of these linear developments on caribou habitat remain unclear. I capitalized on an existing dataset of nearly 700 radio‐tracked female caribou, 1980‐2011, to determine the long‐term effects of hydroelectric corridors on their seasonal distributions. Using an island-wide landcover map, I tested for preference or avoidance hydroelectric corridors in each of 4 seasons using the Euclidean Distance habitat selection technique at the extent of the population ranges (broad scale) for each decade (1980s, 1990s, 2000s). I also examined the distribution of caribou ≤10 km and ≤20 km from corridors (narrow scale) for five herds. At the broad scale, the response was highly variable. Female caribou were most likely to avoid corridors during the 1980s, but they often exhibited little aversion, even preference for corridors, particularly in the 1990s and 2000s. Hydroelectric corridors, therefore, did not appear to be limiting at this scale. I surmise that these long-term shifts reflect the heightened density-dependent food limitation for Newfoundland caribou. At the narrow scale, avoidance of corridors was common – typically, a 50% reduction in use within 2-5 km of the corridor. Consistent with the broad scale, caribou exhibited the strongest tendency for avoidance in the 1980s compared to subsequent decades. Understanding space-use remains central to the study of caribou ecology. Hydroelectric lines in Newfoundland tended to coincide with other anthropogenic features. Cumulative effects must be considered to understand the full range of effects by human developments on caribou. Author Keywords: Caribou, distribution, habitat, hydroelectric, Newfoundland, Rangifer tarandus
Elemental Variation in Daphnia
Environmental variation can affect consumer trait expression and alter ecological and evolutionary dynamics in natural populations. However, although dietary nutrient content can vary by an order of magnitude in natural ecosystems, intra-specific differences in consumer responses to food quality have not been thoroughly investigated. Therefore, the purpose of my dissertation was to examine the influence of dietary nutrition and other environmental factors on consumer phenotypic variation using the freshwater cladoceran Daphnia. I conducted a series of complementary laboratory and field studies where I examined the effects of dietary phosphorus (P) content and additional biological/environmental variables (multi-elemental limitation, genetic variation, and temperature) on daphnid life-history, biochemistry, body elemental composition, and population growth. In general, phenotypic expression within a species varied significantly in response to all experimental variables, but the relative influence of each was highly context dependent. In my first chapter, I found that dietary P content and environmental calcium (Ca) concentrations both altered Daphnia body Ca:P ratios and growth rates of individuals and affected intrinsic rates of increase at the population level. However, food quality appeared to have a much larger effect on trait expression, and body Ca:P ratios were highly sensitive to other forms of dietary nutrient limitation. Next, I documented significant quantitative genetic variation and phenotypic plasticity in daphnid P content, growth, and P use efficiency of field collected animals grown across dietary P gradients. Trait expression was also influenced by genotype X diet interactions suggesting that consumer responses to dietary nutrient limitation can be heritable and may be adaptive in different nutrient environments. Finally, I found that temperature appeared to override food quality effects and decouple P metabolism in natural Daphnia populations, but total biomass production was affected by both dietary P content and temperature, depending on the nutrient content of the lake. Overall, my dissertation shows that consumer responses to nutrient limitation can vary significantly within a species and that changes in trait expression may be modified by other environmental variables. These results should be incorporated into existing stoichiometric models and used to investigate the eco-evolutionary consequences of consumer phenotypic variation in response to nutritional stress. Author Keywords: ecological stoichiometry, evolution, life-history, nutrient limitation, nutrient metabolism, zooplankton
Stopover Movement Patterns by Blackpoll and Canada Warblers Across Southeastern Canada During Fall Migration
Stopover ecology is a topic that surges in relevancy as choices made by migrants during stationary periods (stopover sites) may not only have important individuals’ fitness consequences but also can affect population dynamics. I used MOTUS automated telemetry array to study fall stopover duration of Blackpoll Warbler (BLPW) and departure decisions of BLPW and Canada Warbler (CAWA) in relation to various predictors. I affixed radio-transmitters on 55 BLPWs and 32 CAWAs at two banding stations in Ontario in September-October 2014-2015. Radio-tagged individuals were tracked through the MOTUS network across southeastern Canada. I developed models relating age class, fat score, Julian date and stopover movement types to Blackpolls’ stopover duration. I also examined whether there were species-related differences of wind selectivity when resuming migration. No explanatory variable significantly influenced BLPW’s stopover duration. Both species tended to depart under increased tailwind assistance, but with no difference in the effect of wind conditions between the two species. This study provides further evidence supporting the relevance of local wind conditions as a key factor affecting the departure likelihood, especially when migrating birds face an ecological barrier. Author Keywords: Cardellina canadensis, departure decisions, minimum stopover length, MOTUS, overland fall migration, Setophaga striata
third wheel
Population cycles are regular fluctuations in population densities, however, in recent years many cycles have begun to disappear. With Canada lynx this dampening has also been seen with decreasing latitude corresponding to an increase in prey diversity. My study investigates the role of alternate prey on the stability of the lynx-hare cycle by first comparing the functional responses of two sympatric but ecologically distinct predators on a primary and alternate prey. I then populated a three species predator-prey model to investigate the role of alternate prey on population stability. My results showed that alternate prey can promote stability, though they are unlikely to “stop the cycle”. Furthermore, stability offered by alternate prey is contingent on its ability to increase intraspecific competition. My study highlights that population cycles are not governed by a single factor and that future research needs to be cognizant of interactions between alternate prey and intraspecific competition. Author Keywords: alternate prey, Canis latrans, functional response, Lepus americanus, Lynx canadensis, Tamiasciurus hudsonicus
origin and ecological function of an ion inducing anti-predator behaviour in Lithobates tadpoles
Chemical cues are used commonly by prey to identify predation risk in aquatic environments. Previous work has indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in tadpoles. This thesis found that this ion species: (i) is produced by injured tadpoles; (ii) exhibits increased spectral intensity with higher tadpole biomass; and (iii) is not produced by starved predators. These results refute the hypothesis that the ion is a kairomone, and rather support its role as an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S-. Collision induced dissociation (CID) of ion m/z 501 formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, indicating the presence of sulfate. Green frog (Lithobates clamitans) tadpoles exposed to m/z 501, and an industrial analogue, sodium dodecyl sulphate (NaC12H25O4S), exhibited similar anti-predator responses, thereby suggesting the potential role of organic sulfate as a tadpole behavioural alterant. Author Keywords: Alarm cue, Amphibian, Chemical Ecology, Mass spectrometry, Predator-prey interactions

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ History
  • (-) ≠ Canadian Studies
  • (-) = Ecology
  • (-) ≠ Fortin
  • (-) ≠ Auge, Anne-Christine

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/13