Graduate Theses & Dissertations

mycobiome and skin chemistry of bat wings in relation to white-nose syndrome
White-nose syndrome (WNS) is a skin disease of bats caused by the fungus Pseudogymnoascus destructans (Pd) that damages flight membranes during hibernation and can lead to death. The disease causes mortality of multiple bat species in eastern North America and is spreading into western North America. Future impacts of WNS on naïve bat populations are unknown. Variation in host susceptibility occurs among and within species, but mechanisms driving this variation are unclear. Multiple studies have characterized immunological responses to WNS, but skin physiology as a barrier to pathogens is understudied. The unique ability of Pd to actively penetrate the normal, intact skin of its mammalian host makes WNS an interesting study system to understand skin defenses. Aspects of the mammalian skin environment that can influence disease susceptibility include pH, sebaceous lipids, and microbiomes. I found skin mycobiomes of WNS-susceptible species had significantly lower alpha diversity and abundance compared to bat species resistant to Pd infection. Using these data, I predicted that most naïve bat species in western North America will be susceptible to WNS based on the low diversity of their skin mycobiomes. Some fungi isolated from bat wings inhibited Pd growth in vitro, but only under specific salinity and pH conditions, suggesting the microenvironment on wings can influence microbial interactions and potentially WNS-susceptibility. I measured the wing-skin pH of bats in eastern Canada and found that Eptesicus fuscus (WNS-tolerant) had more acidic skin than M. lucifugus (WNS-susceptible). Differences in sebum quantity and composition among and within mammalian species may help explain variation in skin disease susceptibility and the composition of skin microbiomes. This is due to the antimicrobial properties of sebum and the use of sebum as a nutrition source by microbes. Outcomes of this work further our understanding of inter- and intra-specific differences among bat species and individuals in skin mycobiomes and physiology, which may contribute to variation in WNS-susceptibility. Future research should focus on characterizing the physical and chemical landscape of skin as this is essential for understanding mechanisms structuring skin microbial assemblages and skin disease susceptibility in wildlife. Author Keywords: bat, fungi, microbiome, mycology, physiology, white-nose syndrome
Combining Line Transect Sampling and Photographic-Identification Surveys to Investigate the Abundance and Distribution of Cetaceans
Line transect sampling and photographic-identification (photo-ID) are common survey techniques for estimating the abundance and distribution of cetaceans. Combining these approaches in the field (‘combined LTPI’ surveys) and using data from both components has the potential for generating comprehensive ecological knowledge that can be far more valuable than when these techniques and their data are used independently. In this thesis, I evaluated the results and conclusions from these two methods, used singly and in tandem, by investigating the population dynamics of two humpback dolphin (Sousa chinensis spp.) populations: the large and widely distributed Chinese white dolphin (S. c. chinensis) of the Pearl River estuary (PRE), and the small and geographically isolated subspecies of Taiwanese white dolphin (S. c. taiwanensis) in the eastern Taiwan Strait. Data from combined LTPI surveys in Hong Kong waters, at the eastern edge of the PRE, revealed a shift in space use with individuals spending less time in these waters than at the start of surveys. Data from combined LTPI surveys in Taiwan provided further support for a subspecies restricted to the central western waters, and identified a commonly used area at the northern part of their limited range. These two case studies demonstrated an overall efficacy of combined LTPI surveys in ecological studies of cetaceans. However, a multi-criteria analysis revealed that combined LTPI surveys with a line transect focus (e.g., Hong Kong) performed better than a LTPI survey with a photo-ID focus (e.g., Taiwan) when considering ecological aspects of the study populations, labour and data requirements, and ecological output. Even so, the photo-ID focus of Taiwan’s monitoring program led to better assessments of individual space use patterns, likely helped by the Taiwanese white dolphin population’s smaller size and intensive photographic effort. In both cases, the ecological output of combined LTPI surveys could be improved by expanding the study area or extending the field season or frequency of surveys. Overall, I showed that by following a set of general guidelines, different iterations of the combined LTPI approach (i.e., photo-ID focus or LT focus) can serve as powerful tools for uncovering multi-dimensional ecological information on cetaceans. Author Keywords: abundance, cetacean, distribution, line transect sampling, multi-criteria analysis, Photo-ID
Stress Axis Function and Regulation in New World Flying Squirrels
Across vertebrate taxa, the hypothalamic-pituitary-adrenal axis (or the stress axis) is highly conserved, and is central to vertebrate survival because it allows appropriate responses to psychological stressors. Habitat shapes successful physiological and ecological strategies, and to appreciate how individual species respond to stressors in their environment, it is essential to have a thorough knowledge of the basic stress physiology of each species. In this dissertation, I studied the functioning and evolution of the stress physiology of New World flying squirrels. I showed that baseline, circulating cortisol levels in northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels are some of the highest ever reported for mammals, indicating that their stress axes operate at a higher set point than most other species. I also assessed other aspects of their acute stress response, including free fatty acid and blood glucose levels, and indices of immune function, and showed that the flying squirrels’ physiological reaction to stressors may differ from that of other mammals. Using immunoblotting, I found that corticosteroid-binding globulin (CBG) expression levels in flying squirrels appeared to be higher than previously reported using alternative methods. I also concluded however, that these levels did not appear to be high enough to provide their tissues with the protective CBG-bound buffer from their high circulating cortisol concentrations experienced by the majority of vertebrates. Thus, this arm of cortisol regulation within the flying squirrel stress axes may be weak or non-existent. Following this, I focused on southern flying squirrels and showed evidence that the second arm of cortisol regulation — the negative feedback mechanism at the level of the brain — functions effectively, but that this species is glucocorticoid resistant. Their tissue receptors appear to have a reduced affinity for cortisol, and this affinity may change seasonally to allow for the onset of other biological processes required for survival and reproduction. Due to their distinctive stress physiology, northern and southern flying squirrels may provide comparative physiologists with model systems for further probing of the function and evolution of the stress axis among vertebrates. Author Keywords: corticosteroid-binding globulin, flying squirrel, Glaucomys, glucocorticoids, physiological ecology, stress physiology
Nutrient Metabolism of an Aquatic Invertebrate and its Importance to Ecology
Aquatic consumers frequently face nutritional limitation, caused in part, by imbalances between the nutrients supplied by primary producers and the metabolic demands of the consumers. These nutritional imbalances alter many ecological processes including consumer life-history traits, population dynamics, and food web properties. Given the important ecological role of organismal nutrition, there is a need to have precise and specific indicators of nutritional stress in animals. Despite this need, current methods used to study nutrition are unable to distinguish between different types of nutritional limitation. Here I studied nutritional metabolism in the freshwater zooplankter, Daphnia. A greater understanding of nutritional metabolism would allow for the development of dietary bio-indicators that could improve the study of the nutritional ecology of animal consumers. Specifically, I addressed the question: What affects the biochemical composition of a generalist aquatic consumer? My overall hypothesis was that the quantity and quality of the diet affects the biochemical composition in a nutrient specific manner. To test this hypothesis, I examined various response variables involved in nutrient metabolism such as alkaline phosphatase activity, whole metabolome, and free amino acid composition. For each response variable, I grew Daphnia under various nutritional stressors and determined if responses are nutrient specific or are a general stress response. I found the current method of measuring alkaline phosphatase was not a phosphorus specific indicator, as activity increased in all nutrient stressed treatments. Analyzing the whole metabolome resulted in nutritional stressors being separated in multivariate space, with many identified metabolites being significantly different from nutrient rich Daphnia. Upon further examination the daphnids free amino acids profiles are caused by differences between the supply of amino acids from the algae and the demand within the Daphnia. These differences in supply and demand resulted in the ability to classify the nutritional status of Daphnia with the use of discriminant analysis, a classification multivariate model. In addition to a deeper understanding and advanced knowledge of the physiological changes caused by nutrient limitation, this research has provided strong evidence for the application of nutritional biomarkers/profiles to identified the nutritional status of Daphnia. Author Keywords: Bio-indictor, Ecological stoichiometry, Metabolism, Nutritional limitation, Nutritional status

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Environmental and Life Sciences
  • (-) ≠ Ahee
  • (-) ≠ Watmough
  • (-) ≠ Alimi
  • (-) ≠ Master of Science
  • (-) = Zoology

Filter Results

Date

2014 - 2024
(decades)
Specify date range: Show
Format: 2024/05/22

Subject (Topic)