Graduate Theses & Dissertations

Deep learning for removal of non-resonant background in CARS hyperspectroscopy
In this work, a deep learning approach proposed by Valensise et al. [3] for extracting Raman resonant spectra from measured broadband CARS spectra was explored to see how effective it is at removing NRB from our experimentally measured “spectral-focusing”-based approach to CARS. A large dataset of realistic simulated CARS spectra was used to train a model capable of performing this spectral retrieval task. The non-resonant background shape used in creating the simulated CARS spectra was altered, to mimic our experimentally measured NRB response. Two models were trained: one using the original approach (Specnet) and one using the updated NRB “Specnet Plus”, and then tested their ability to retrieve the vibrationally resonant spectrum from simulated and measured CARS spectra. An error analysis was performed to compare the model's retrieval performance on two simulated CARS spectra. The modified model's mean squared error value was five and two times lower for the first and second simulated CARS spectra, respectively. Specnet Plus was found to be more effective at extracting the resonant signals. Finally, the NRB extraction abilities of both models are tested on two experimentally measured CARS hyperspectroscopy samples (starch and chitin), with the updated NRB model (Specnet Plus) outperforming the original Specnet model. These results suggest that tailoring the approach to reflect what we observe experimentally will improve our spectral analysis workflow and increase our imaging potential. Author Keywords:
Extraction and Characterization of Hyaluronic Acid and Collagen from Eggshell Membrane Waste
Connecting academia to industry is one important way to advance towards meeting the United Nations (UN) Sustainability Goals (SDGs).1 Sustainability can be applied to all industrial sectors with the SDGs being implemented by 2030.2 This research contributes to the SDGs by investigating a way to remediate an industrial waste stream in the egg-breaking industry. If adopted, this would reduce the amount of eggshell membrane (ESM) waste placed in landfill where it does not decompose properly. The work described in this thesis specifically targets extraction of collagen and hyaluronic acid (HA), two components of the ESM that are of commercial value in the cosmetic, pharmaceutical, and biomedical industries3,4 . Deliverables from this research include economically viable extraction methods, developed based on green chemistry approaches, that can be transferred from lab bench to industrial scale. The extraction development process was guided by the 12 Principles of Green Chemistry5,6,7 and the 12 Principles of Green Engineering.8 HA was most successfully extracted using a sodium acetate solution on ground ESM. Filtrate was collected, exhaustively dialyzed and lyophilized. High molecular weight HA was recovered. Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and proton nuclear magnetic resonance (NMR) spectroscopy compared extracted material to reference HA identifying successful extraction. Collagen was extracted using acetic acid or pepsin enzyme digestion. Hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry (MS) compared amino acid composition of extracted materials to reference collagen material. FTIR-ATR spectra also supported successful extraction of collagen. This work identifies that HA and collagen can be conveniently extracted from ESM using an economical approach that can be implemented into egg-breaking facilities. This work highlights the benefits of connecting academia to industry to advance green chemical approaches while implementing sustainable practices into existing industry. Author Keywords: collagen, eggshell membrane waste, extraction, green chemistry, hyaluronic acid, sustainability
Adoption of a Finite Element Model of Material Deformation Relevant to Studying Corneal Biomechanics
The human cornea is required to exhibit specific material properties to maintain its regular shape under typical intraocular pressures which then allow for its correct optical functionality. In this thesis, the basis of continuum solid mechanics and the finite element method are introduced. We use finite element modelling to simulate the extension of an effective-1d, linear-elastic bar, a cornea-like body governed by Poisson’s equation, and the deformation of a loaded, linear-elastic, cube. Preliminary results for the deformation of a simulated, linear-elastic, cornea have also been achieved using the finite element approach. Author Keywords: continuum solid mechanics, corneal biomechanics, finite element method, intraocular pressure
UV-Curable hybrid sol-gel materials
This thesis describes the synthesis, application and evaluation of a UV crosslinked 3-methacryloxypropyltrimethoxysilane-derived coating formulation. This is a two-component sol-gel system with 3-methacryloxypropyltrimethoxysilane (MaPTMS) and tetraethoxysilane (TEOS). Herein we show that if we change the co-solvent required for solubilizing MaPTMS from the more common methanol and ethanol to isopropanol we change the rate of hydrolysis from days or weeks to minutes. With the assistance of 2D 29Si-NMR we demonstrate that the system undergoes extensive condensation in twenty minutes. Using standard UV irradiation, the material can be extensively UV crosslinked with 70% of the methacryloxy functionality being consumed in 5 minutes upon irradiation in the presence of a photo-initiator. When this material is used to coat low carbon steel and immersed in an accelerated corrosion solution (dilute Harrison’s solution); this material affords low carbon steel 25 hours of protection when crosslinked and 17 hours of protection when uncrosslinked. The material was then used to encapsulate polyaniline (PANI), an intrinsic conductive polymer used in the corrosion protection of metal substrates. PANI has been encapsulated previously in sol-gel material, but due to the pH dependence of the solubility of PANI, it can not be encapsulated in more commonly chemically crosslinked sol-gel. As our system is UV crosslinked rather than chemically crosslinked, we were able to successfully demonstrate the inclusion of PANI into our coating system. Finally, this thesis includes a thorough computational investigation into the structure and band gap of PANI. Through the analysis of the band gap it was shown that the structure of the polymer commonly displayed in literature is not the correct structure of the polymer. Our results suggest that when PANI is made electrochemically, the oligomer contains two quinoid units next to one another instead of the more usually represented regularly alternating benzoid and quinoid units. The results also suggest that when PANI is made using the oxidant ammonium persulfate, the polymer most likely contains a Michael adduct structure somewhere in the polymer chain which dominates PANI’s electronic properties. Author Keywords: 3-Methacryloxypropyltrimethoxysilane, Computational Chemistry , Corrosion , Polyaniline, Tetraethoxysilane
Cluster Approach Applied to the One-Dimensional Anderson-Hubbard Model
S. Johri and R. Bhatt developed a real-space renormalization group approach aimed at extracting the localized single-particle eigenstates of the Anderson model from a large system by identifying clusters of resonant site potentials. E. Campbell generalized this real-space renormalization group approach using standard perturbation theory. Both approaches were intended to approximate the single-particle density of states of the Anderson model. In this thesis, we aimed to test the potential of applying a similar real-space renormalization group approach to calculate the density of states of the interacting Anderson-Hubbard model. Our interest in the density of states of this model is due to a V-shaped zero-bias anomaly in two-dimensional systems. A real-space renormalization group approach is best applied to a one-dimensional system. We found that the zero-bias anomaly is not V-shaped in one-dimension. To test the potential of a real-space renormalization group approach, we used the cluster approach which is the same as the non-interacting renormalization group approach but without the perturbation theory and found that for strong disorder this technique could accurately calculate the density of states over a wide range of energies but deviated from exact results at the band edge, at $\omega=\pm U$ and near $\omega=0$. The first two inaccuracies will be reduced with a proper real-space renormalization group approach. We suspect that the last inaccuracy is associated with long range physics and may be difficult to recover. We also developed a technique that adjusts the identification of clusters in the cluster approach to improve the computation time of the density of states with minimal loss of accuracy in a tunable range around the Fermi level. We found that this technique significantly reduced the computation time and was able to preserve the density of states near the Fermi level, except at the smallest energies near $\omega=0$. Author Keywords: Anderson-Hubbard model, renormalization group, Strong electron correlations, Zero-bias anomaly
Phosphoric Acid Chemically Activated Waste Wood
Activated Carbon (AC) is commonly produced by gasification, but there has been increasing interest in chemical activation due to its lower activation temperatures and higher yields. Phosphoric acid, in particular, succeeds in both these areas. Phosphoric acid activated carbon (PAC) can be environmentally sustainable, and economically favourable, when the phosphoric acid used in the activation is recycled. This thesis describes the digestion and activation of waste wood using phosphoric acid, as well as methods used to recover phosphoric acid, functionalize the produced activated carbon with iron salts and then test their efficacy on the adsorption of target analytes, selenite and selenate. In order to achieve an efficient phosphoric acid based chemical activation, further understanding of the activation process is needed. A two-step phosphoric acid activation process with waste wood feed stock was examined. The filtrate washes of the crude product and the surface composition of the produced PAC were characterized using X-ray Photoelectron Spectroscopy (XPS), Fourier Transform-Infrared spectroscopy (FT-IR), Ion Chromatography (IC), and 31P Nuclear Magnetic Resonance (NMR). XPS of the unwashed PAC contained 13.3 atomic percent phosphorous, as phosphoric acid, while the washed sample contained 1.4 atomic percent phosphorous as PO43-, and P2O74-. Using 31P NMR, phosphoric acid was identified as the primary phosphorous species in the acidic 0.1 M HCl washings, with pyrophosphates also appearing in the second 0.1 M NaOH neutralizing wash, and finally a weak signal from phosphates with an alkyl component also appearing in the DI wash. IC showed high concentrations of phosphoric acid in the 0.1 M HCl wash with progressively lower concentrations in both the NaOH and DI washes. Total phosphoric acid recovery was 96.7 % for waste wood activated with 25 % phosphoric acid, which is higher than previous literature findings for phosphoric acid activation. The surface areas of the PAC were in the 1500-1900 m2g-1 range. Both pre and post activation impregnation of iron salts resulted in iron uptake. Pre-activation resulted in only iron(III) speciation while post-activation impregnation of iron(II)chloride did result in iron(II) forming on the PAC surface. The pre-activated impregnated PAC showed little to no adsorption of selenite and selenate. The post-activation impregnated iron(II)chloride removed up to 12.45 ± 0.025 mg selenium per g Iron-PAC. Competitive ions such as sulfate and nitrate had little effect on selenium adsorption. Phosphate concentration did affect the uptake. At 250 ppm approximately 75 % of adsorption capacity of both the selenate and the selenite solutions was lost, although selenium was still preferentially adsorbed. Peak adsorption occurred between a pH of 4 and 11, with a complete loss of adsorption at a pH of 13. Author Keywords: Activated Carbon, doping, Iron, phosphoric acid, selenium
silicon sol-gel approach to the development of forensic blood substitutes
The research and development of synthetic blood substitutes is a reported need within the forensic community. This work contributes to the growing body of knowledge in bloodstain pattern analysis by offering a materials science approach to designing, producing and testing synthetic forensic blood substitutes. A key deliverable from this research is the creation of a robust silicon-based material using the solution-gelation technique that has been validated for controlled passive drip and spatter simulation. The work investigates the physical properties (viscosity, surface tension and density) of forensic blood substitute formulations and describes the similarity in the spreading dynamics of the optimized material to whole human blood. It then explores how blood and other fluids behave in impact simulation using high-speed video analysis and supports the use of the optimized material for spatter simulation. Finally, the work highlights the practical value of the material as an educational tool for both basic and advanced bloodstain experimentation and training. Author Keywords: bloodstain pattern analysis, forensic blood substitutes, high-speed video analysis, silicon solution-gelation chemistry, thin-film deposition, training and education
Correlating density of states features with localization strength in disordered interacting systems
Johri and Bhatt found singular behavior near the band edge in the density of states as well as in the inverse participation ratio of the Anderson model. These singularities mark a transition to an energy range dominated by resonant states. We study the interacting case using an ensemble of two-site Anderson-Hubbard systems. We find the ensemble-averaged density of states and generalized inverse participation ratio have more structure than in the non-interacting case because there are more transitions and in particular the transitions depend on the ground state. Nonetheless, there are regions of sharp decline in the generalized inverse participation ratio associated with specific density of state features. Moreover these features move closer to the Fermi level with the addition of interactions making them more experimentally accessible. Unfortunately resonances unique to interacting systems cannot be specifically identified. Author Keywords: Correlated electrons, Disorder, Localization
Synthesis of Lipid Based Polyols from 1-butene Metathesized Palm Oil for Use in Polyurethane Foam Applications
This thesis explores the use of 1-butene cross metathesized palm oil (PMTAG) as a feedstock for preparation of polyols which can be used to prepare rigid and flexible polyurethane foams. PMTAG is advantageous over its precursor feedstock, palm oil, for synthesizing polyols, especially for the preparation of rigid foams, because of the reduction of dangling chain effects associated with the omega unsaturated fatty acids. 1-butene cross metathesis results in shortening of the unsaturated fatty acid moieties, with approximately half of the unsaturated fatty acids assuming terminal double bonds. It was shown that the associated terminal OH groups introduced through epoxidation and hydroxylation result in rigid foams with a compressive strength approximately 2.5 times higher than that of rigid foams from palm and soybean oil polyols. Up to 1.5 times improvement in the compressive strength value of the rigid foams from the PMTAG polyol was further obtained following dry and/or solvent assisted fractionation of PMTAG in order to reduce the dangling chain effects associated with the saturated components of the PMTAG. Flexible foams with excellent recovery was achieved from the polyols of PMTAG and the high olein fraction of PMTAG indicating that these bio-derived polyurethane foams may be suitable for flexible foam applications. PMTAG polyols with controlled OH values prepared via an optimized green solvent free synthetic strategy provided flexible foams with lower compressive strength and higher recovery; i.e., better flexible foam potential compared to the PMTAG derived foams with non-controlled OH values. Overall, this study has revealed that the dangling chain issues of vegetable oils can be addressed in part using appropriate chemical and physical modification techniques such as cross metathesis and fractionation, respectively. In fact, the rigidity and the compressive strength of the polyurethane foams were in very close agreement with the percentage of terminal hydroxyl and OH value of the polyol. The results obtained from the study can be used to convert PMTAG like materials into industrially valuable materials. Author Keywords: Compressive Strength, Cross Metathesis, Fractionation, Polyols, Polyurethane Foams, Vegetable Oils
Novel Aliphatic Lipid-Based Diesters for use in Lubricant Formulations
Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects. Author Keywords: Crystallization, Phase behaviour, Rheology, Structure-Function, Thermogravimetric analysis, Vegetable Oils
Novel Functional Materials From Renewable Lipids
Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit melting temperatures between 39 °C and 77 °C, with latent heats greater than 220 J/g; much greater than paraffin waxes, which are currently the industry standard. Assessment of the trends between differing monomer lengths, in terms of number of CH2 groups of the 24 diesters synthesized exhibited structure/function dependencies in latent heat values and phase change temperatures, providing an understanding of the influence of each monomer on PCM thermal properties. A synthetic procedure was developed to produce these PCMs from a low value biodiesel feedstock. Application of these PCMs in the thermoregulation of hot beverages was demonstrated using a representative diester. This PCM cooled a freshly brewed hot beverage to a desired temperature within 1 minute, compared to 18 minutes required for the control. Furthermore, the PCM kept the beverage within the desired temperature range for 235 minutes, 40 % longer than the control. Author Keywords: Antimicrobial Surface, Click Chemistry, Green Chemistry, Phase Change Material, Polytriazole, Renewable
"Multimodal Contrast" from the Multivariate Analysis of Hyperspectral CARS Images
The typical contrast mechanism employed in multimodal CARS microscopy involves the use of other nonlinear imaging modalities such as two-photon excitation fluorescence (TPEF) microscopy and second harmonic generation (SHG) microscopy to produce a molecule-specific pseudocolor image. In this work, I explore the use of unsupervised multivariate statistical analysis tools such as Principal Component Analysis (PCA) and Vertex Component Analysis (VCA) to provide better contrast using the hyperspectral CARS data alone. Using simulated CARS images, I investigate the effects of the quadratic dependence of CARS signal on concentration on the pixel clustering and classification and I find that a normalization step is necessary to improve pixel color assignment. Using an atherosclerotic rabbit aorta test image, I show that the VCA algorithm provides pseudocolor contrast that is comparable to multimodal imaging, thus showing that much of the information gleaned from a multimodal approach can be sufficiently extracted from the CARS hyperspectral stack itself. Author Keywords: Coherent Anti-Stokes Raman Scattering Microscopy, Hyperspectral Imaging, Multimodal Imaging, Multivariate Analysis, Principal Component Analysis, Vertex Component Analysis

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Emery
  • (-) ≠ Whillans
  • (-) = Materials Science
  • (-) = Materials Science
  • (-) ≠ Tessier, Michael
  • (-) ≠ Physics