Graduate Theses & Dissertations

Assessing effects and fate of environmental contaminants in invasive, native, and endangered macrophytes
Macrophytes play an important role in aquatic ecosystems, and thus are integral to ecological risk assessments of environmental contaminants. In this dissertation, I address gaps in the assessments of contaminant fate and effects in macrophytes, with focus on glyphosate herbicide use for invasive plant control. First, I evaluated the suitability of Typha as future standard test species to represent emergent macrophytes in risk assessments. I concluded that Typha is ecologically relevant, straight-forward to grow, and its sensitivity can be assessed with various morphological and physiological endpoints. Second, I assessed effects from glyphosate (Roundup WeatherMAX® formulation) spray drift exposure on emergent non-target macrophytes. I performed toxicity tests with five taxa, Phragmites australis, Typha × glauca, Typha latifolia, Ammannia robusta, and Sida hermaphrodita, which in Canada collectively represent invasive, native, and endangered species. I found significant differences in glyphosate sensitivity among genera, and all species’ growth was adversely affected at concentrations as low as 0.1% (0.54 g/L), much below the currently used rate (5%, 27 g/L). Third, I assessed the potential for glyphosate accumulation in and release from treated plant tissues. I found that P. australis and T. × glauca accumulate glyphosate following spray treatment, and that accumulated glyphosate can leach out of treated plant tissues upon their submergence in water. Finally, I assessed effects of released glyphosate on non-target macrophytes. I found that P. australis and T. × glauca leachate containing glyphosate residues can stimulate the germination and seedling growth of T. latifolia, but can exert an inhibiting effect on A. robusta, although leachate without glyphosate caused similar responses in both plants. Additionally, I found no negative effects in A. robusta when exposed to glyphosate residues in surface water, or when grown with rhizosphere contact to an invasive plant that was wicked (touched) with glyphosate. My results show that non-target macrophytes can be at risk from glyphosate spray for invasive plant control, but risks can be mitigated through informed ecosystem management activities, such as targeted wick-applications or removing plant litter. Integrating contaminant fate and effect assessments with emergent macrophytes into ecological risk assessments can support the protection of diverse macrophyte communities. Author Keywords: Ecosystem management, Ecotoxicology, Glyphosate, Herbicide, Invasive plant, Species at risk
collaborative ecotoxicological risk assessment of in-place pollutants in Owen Sound Bay, Lake Huron within the Saugeen Ojibway Nation Territory
Owen Sound Bay, which is located within the traditional territory of the Saugeen Ojibway Nation (SON), is contaminated as a result of historical industrial and shipping activity. Gross contamination of the sediments in the inner part of the Bay (i.e., Owen Sound Harbour) includes high concentrations of polycyclic aromatic hydrocarbons (PAHs) and other organic compounds, as well as metals that may pose a risk to the SON fishery for lake whitefish (Coregonus clupeaformis). However, evaluating the environmental risks posed by contaminated sediments is a challenge, as these risks are dependent upon several factors and require multiple lines of evidence. Including Indigenous communities in environmental risk assessment and the management of those risks is vital for sustaining ecosystem integrity, as well as respecting Treaty Rights. In this study, a risk assessment framework was developed that included several risk assessment tools used in Western science and also encompassed the concerns and values of the SON, including the application of SON-ecological knowledge. Methods for risk evaluation included gathering lines of evidence though community workshops, as well as field sampling in the Bay to determine the concentrations of PAHs and other organic contaminants in sediments and in the water column. Laboratory studies of toxicity to early life stages of lake whitefish and Japanese medaka (Oryzias latipes) and sediment disturbance simulations to evaluate biological responses in juvenile lake whitefish were also completed as lines of evidence. The results indicate that leaving the harbour “as is” without a thorough analysis of remediation options fails to address the concerns of the people within the SON communities. Overall, this research demonstrated a successful process for developing a collaborative risk assessment framework that recognizes the sovereignty of Indigenous peoples and promotes Nation-to-Nation decision making. Author Keywords: biomarkers, Coregonus clupeaformis, Indigenous knowledge, polycyclic aromatic hydrocarbons, risk assessment, source tracking
Molecular Composition of Dissolved Organic Matter Controls Metal Speciation and Microbial Uptake
Aquatic contaminant mobility and biological availability is strongly governed by the complexation of organic and inorganic ligands. Dissolved organic matter (DOM) is a complex, heterogeneous mixture of organic acids, amino acids, lipids, carbohydrates and polyphenols that vary in composition and can complex to dissolved metals thereby altering their fate in aquatic systems. The research conducted in this doctoral dissertation addresses 1) how DOM composition differs between phytoplankton taxa and 2) how DOM composition affects metal speciation and its subsequent microbial bioavailability in laboratory and field conditions. To accomplish this, a series of analytical methods were developed and applied to quantify thiols, sulphur containing DOM moieties, and the molecular composition of DOM. The works presented in this thesis represents one of the first comprehensive and multipronged analyses of the impact of phytoplankton metabolite exudates on microbial metal bioavailability. This dissertation demonstrated the analytical versatility of high-resolution mass spectrometry as a tool for compound specific information, as well as having the capabilities to obtain speciation information of organometallic complexes. The work presented in this PhD strengthens the understanding compositional differences of both autochthonous and allochthonous DOM and their effects on metal biogeochemistry. Author Keywords: Dissolved Organic Matter, Mercury, Metal Accumulation, Phytoplankton, Spring Melts, Thiol
Fate and Effects of Silver Nanoparticle Addition in a Lake Ecosystem
The potential release of nanoparticles into aquatic environments is raising global concerns. As antimicrobials, silver nanoparticles (AgNPs) are among the most prominent form in use. Despite this, their fate, long-term toxicity, and ecological relevance have yet to be investigated largely under natural settings with seasonality and environmental complexity. To better understand the environmental significance, we released AgNPs into Lake 222 at the Experimental Lakes Area over two years. AgNPs remained suspended in the water column and were detected throughout the lake and in the lower food web. Total Ag concentrations ranged from below 0.07 to 18.9 μg L-1 in lake water, and were highly dynamic seasonally both in the epilimnion and hypolimnion depending on the physical, chemical and biological conditions of the lake. Approximately 60% of the measured Ag mass in October was present in the sediment in 2014 and 50% in 2015 demonstrating relatively high sedimentation and removal from the water column. During winter months, Ag was largely absent in the water column under the ice. After ice melt and before summer stratification, Ag concentrations increased in the lake suggesting AgNPs may not be tightly bound to the sediment and are able re-enter the water column during spring mixing events. Despite temporal variation, total Ag was highly synchronous across spatial locations for both years, indicating rapid dispersal upon lake entry. When investigating AgNP sizes using spICPMS, size distributions were similar across spatial locations, with the 40-60 nm size class constituting approximately 60% of all particles identified. Large aggregates (>100 nm) and dissolved Ag were infrequently detected within the lake. Ag accumulated in the lower food web ranging from 0.27-16.82 μg Ag mg C-1 in the bacterioplankton and 0.17-6.45 μg Ag mg C-1 in algae (particulate fraction). Partial least squares models revealed the highest predictors of Ag accumulation were dissolved nutrients including DOC, TDN, TDP in bacterioplankton. Major predictors for particulate Ag included temperature, dissolved oxygen, and sampling date. The diversity of predictors among biological compartments emphasizes the importance of understanding the role of environmental complexity within the lower food web. Despite Ag accumulation we did not detect strong negative effects on the lake food web. An increase in particulate and bacterioplankton chlorophyll-a occurred after addition in contrast to reference lakes, which may indicate a hormetic response to low dose AgNP concentrations. Our findings provide the first whole-lake perspective regarding Ag fate and toxicity, suggesting small scale experiments may overestimate environmental responses. Author Keywords: Ecotoxicity, Fate, Lower food web, Silver Nanoparticles, Whole-lake addition
effects of particulate matter on the fate and toxicity of silver nanoparticles
As an emerging contaminant, the antimicrobial agent silver nanoparticles (AgNPs) have been receiving considerable attention to determine their potential effects to aquatic ecosystems. However, estimates of aquatic consumer survivorship and other toxicological endpoints vary considerably among experiments, largely due to the environment in which the test takes place. Throughout this thesis I aim to understand which natural environmental variables impact toxicity to the common aquatic consumer Daphnia. I focus on the effects of particulate matter as it may play a role in animal nutrition as well as interact with AgNPs. I explore particulate matter’s effect on survival in the complex matrices including other natural variables that could impact toxicity. I conduct a series of complimentary field and laboratory studies to understand how particles impact AgNP toxicity and how those interactions vary within whole lake ecosystems. Using laboratory studies, I establish that algal particles mitigate the toxic effects of AgNPs on Daphnia survival through removing Ag from the water column and that phosphorus increases this effect. Using wild Daphnia and lake water, I demonstrate the ability of particulate matter to mitigate toxicity in complex natural settings. It was also one of the major predictors of AgNP toxicity to Daphnia along with dissolved organic carbon and daphnid seasonal health. Finally, using a whole lake AgNP addition experiment, I demonstrate that particles and AgNPs interact variably in the lake. Silver from AgNPs binds to particles and is removed to the sediments through the actions of settling particles without impacting the dynamics of living communities. Overall, I am able to demonstrate that the natural components of lake ecosystems, especially particulate matter, are able to mitigate the effects of AgNPs in lake ecosystems to a point where they likely will be never pose a threat to the survivorship of aquatic consumers such as Daphnia. Author Keywords: Daphnia, ecotoxicity, particulate matter, Silver nanoparticles, whole lake experiment

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Burness
  • (-) = Doctor of Philosophy
  • (-) ≠ Indigenous Studies
  • (-) = Toxicology

Filter Results

Date

2014 - 2024
(decades)
Specify date range: Show
Format: 2024/05/15

Degree Discipline