Graduate Theses & Dissertations

Modelling the Lanthanum Aluminate-Strontium Titanate Interface with a Modified Transverse Ising Model
In 2004 it was discovered that a two-dimensional electron gas (2DEG) forms at the interface between lanthanum aluminate (LAO) and strontium titanate (STO). This 2DEG exhibits a variety of electronic and magnetic phenomena, motivating intense research into its applicability to electronic devices. Over the years several models have been developed in theoretical exploration of this system. Here, the transverse Ising model is applied to the LAO/STO interface for the first time. It is shown that the model as it is traditionally formulated cannot accurately predict the structure of the electron density at the interface. I show that this can be fixed with a simple modification of the model, and discuss how this modification affects both the polarization distribution in ferroelectric thin films and the electron density at the LAO/STO interface. The importance of including the depolarizing field when modelling spatially inhomogeneous ferroelectric systems is also explored. Author Keywords: ferroelectric thin film, lanthanum aluminate, strontium titanate, transverse Ising model, two-dimensional electron gas
Role of Dielectric Screening in SrTiO3-Based Interfaces
We build a theoretical model for exploring the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 (STO) and a number of perovskite materials including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation, and the dielectric polarization via a Landau-Devonshire free energy that incorporates STO's strongly nonlinear, nonlocal, field-, and temperature-dependent dielectric response. We consider three models for the dielectric polarization at the interface: an ideal-interface model in which the interface has the same permittivity as the bulk, a dielectric dead-layer model in which the interface has permittivity lower that the bulk, and an interfacial-strain model in which the strain effects are included. The ideal-interface model band structure comprises a mix of quantum 2D states that are tightly bound to the interface, and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the STO substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. We speculate that the quasi-3D tails form the low- density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements. Multiple experiments have observed a sharp Lifshitz transition in the band structure of STO interfaces as a function of applied gate voltage. To understand this transition, we first propose a dielectric dead-layer model. It successfully predicts the Lifshitz transition at a critical charge density close to the measured one, but does not give a complete description for the transition. Second, we use an interfacial-strain model in which we consider the electrostrictive and flexoelectric coupling between the strain and polarization. This coupling generates a thin polarized layer whose direction reverses at a critical density. The transition occurs concomitantly with the polarization reversal. In addition, we find that the model captures the two main features of the transition: the transition from one occupied band to multiple occupied bands, and the abrupt change in the slope of lowest energy band with doping. Author Keywords:
Real-space renormalization group approach to the Anderson model
Many of the most interesting electronic behaviours currently being studied are associated with strong correlations. In addition, many of these materials are disordered either intrinsically or due to doping. Solving interacting systems exactly is extremely computationally expensive, and approximate techniques developed for strongly correlated systems are not easily adapted to include disorder. As a non-interacting disordered model, it makes sense to consider the Anderson model as a first step in developing an approximate method of solution to the interacting and disordered Anderson-Hubbard model. Our renormalization group (RG) approach is modeled on that proposed by Johri and Bhatt [23]. We found an error in their work which we have corrected in our procedure. After testing the execution of the RG, we benchmarked the density of states and inverse participation ratio results against exact diagonalization. Our approach is significantly faster than exact diagonalization and is most accurate in the limit of strong disorder. Author Keywords: disorder, localization, real-space renormalization, strong correlations
TWO-DIMENSIONAL CONDUCTIVITY AT LaAlO3/SrTiO3 INTERFACES
Experiments have observed a two-dimensional electron gas at the interface of two insulating oxides: strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3). These interfaces exhibit metallic, superconducting, and magnetic behaviours, which are strongly affected by impurities. Motivated by experiments, we introduce a simple model in which impurities lie at the interface. We treat the LaAlO3 as an insulator and model the SrTiO3 film. By solving a set of self-consistent Hartree equations for the charge density, we obtain the band structure of the SrTiO3 film. We then study the relative contributions made by the occupied bands to the two-dimensional conductivity of the LaAlO3/SrTiO3 interface. We find that the fractional conductivity of each band depends on several parameters: the mass anisotropy, the filling, and the impurity potential. Author Keywords: conductivity, impurities, insulating oxides, Two-dimensional electron gases
Molecular Dynamics Simulations of Aqueous and Confined Systems Relevant to the Supercritical Water Cooled Nuclear Reactor
Supercritical water (SCW) is the intended heat transfer fluid and potential neutron moderator in the proposed GEN-IV Supercritical Water Cooled Reactor (SCWR). The oxidative environment poses challenges in choosing appropriate design materials, and the behaviour of SCW within crevices of the passivation layer is needed for developing a corrosion control strategy to minimize corrosion. Molecular Dynamics simulations have been employed to obtain diffusion coefficients, coordination number and surface density characteristics, of water and chloride in nanometer-spaced iron hydroxide surfaces. Diffusion models for hydrazine are evaluated along with hydration data. Results demonstrate that water is more likely to accumulate on the surface at low density conditions. The effect of confinement on the water structure diminishes as the gap size increases. The diffusion coefficient of chloride decreases with larger surface spacing. Clustering of water at the surface implies that the SCWR will be most susceptible to pitting corrosion and stress corrosion cracking. Author Keywords: Confinement, Diffusion, Hydration, MD Simulations, Supercritcal Water

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Bell
  • (-) ≠ History
  • (-) = Materials Science
  • (-) ≠ Vreugdenhil
  • (-) ≠ Materials Science

Filter Results