Graduate Theses & Dissertations

Cytokinin Oxidase/Dehydrogenase (CKX) Gene Family in Soybeans (Glycine max)
Glycine max (soybean) is an economically important plant species that registers a relatively low yield/seed weight compared to other food and oil seed crops due to higher rates of flower and pod abortion. Alleviation of this abortion rate can be achieved by altering the sink strength of the reproductive organs of soybeans. Cytokinin (CK) plays a fundamental role in promoting growth of sink organ (flowers and seeds) by increasing the assimilate demand. Cytokinin oxidase/dehydrogenase (CKX) is an enzyme that catalyses the irreversible breakdown of active CKs and hence reduce the cytokinin content. The current thesis uncovers the members of CKX gene family in soybeans and the natural variations among CKX genes within soybean varieties with different yield characteristics. The identification of null variants of OsCKX2 that resulted in large yield increases by Ashikari et al. (2005) provided a rationale for current thesis. The soybean CKX genes along with the ones from Arabidopsis, Rice and Maize were used to construct a phylogenetic tree. Using comparative phylogeny, protein properties and bioinformatic programs, the potential effect of the identified natural variations on soybean yield was predicted. Five genes among the seventeen soybean CKXs identified, showed polymorphisms. One of the natural variations, A159G, in the gene GmCKX16 occurred close to the active site of the protein and was predicted to affect the activity of enzyme leading to higher accumulation of CKs and hence increased seed weight. Use of such natural variations in marker assisted breeding could lead to the development of higher yielding soybean varieties. Author Keywords: CKX, Cytokinins, Seed weight, Seed Yield, SNPs, Soybeans
Investigating the regional variation in frequencies of the invasive hybrid cattail, Typha × glauca
Interspecific hybridization rates can vary depending on genomic compatibilities between progenitors, while subsequent hybrid spread can vary depending on hybrid performance and habitat availability for hybrid establishment and persistence. As a result, hybridization rates and hybrid frequencies can vary across regions of parental sympatry. In areas around the Laurentian Great Lakes, Typha × glauca is an invasive plant hybrid of native Typha latifolia and introduced Typha angustifolia. In areas of parental sympatry in Atlantic Canada and outside of North America, T. × glauca has been reported as either rare or non-existent. I investigated whether the low frequencies of hybrids documented in Nova Scotia, Atlantic Canada, are influenced by reproductive barriers that prevent hybrid formation or environmental factors (salinity) that reduce hybrid performance. I identified an abundance of hybrids in the Annapolis Valley (inland) and a scarcity of hybrids in coastal wetlands through preliminary site surveys throughout Nova Scotia. In Annapolis Valley populations, flowering times of progenitor species overlapped, indicating that asynchronous flowering times do not limit hybrid formation in this region. Viable progeny were created from interspecific crosses of T. latifolia and T. angustifolia from Nova Scotia, indicating that there are no genomic barriers to fertilization and germination of hybrid seeds. Typha × glauca germination in high salinity was significantly lower than that of T. latifolia, but there was no difference at lower salinities. Therefore, while germination of hybrid seeds may be impeded in the coastal wetlands where salinity is high, inland sites have lower salinity and thus an environment conducive to hybrid germination. However, I found that once established as seedlings, hybrids appear to have greater performance over T. latifolia across all salinities through higher ramet production. Moreover, I found that T. latifolia sourced from Ontario had reduced germination and lower survivorship in high salinities compared to T. latifolia sourced from Nova Scotia, which could indicate local adaptation by T. latifolia to increased salinity. These findings underline that interactions between environment and local progenitor lineages can influence the viability and the consequent distribution and abundance of hybrids. This, in turn, can help explain why hybrids demonstrate invasiveness in some areas of parental sympatry but remain largely absent from other areas. Author Keywords: flowering phenology, Hybridization, invasive species, physiology, pollen compatibility, salinity tolerance

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ History
  • (-) ≠ Art history
  • (-) ≠ Electrochemical analysis
  • (-) = Genetics
  • (-) = Botany

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/04/27

Degree

Degree Discipline

Subject (Topic)