Graduate Theses & Dissertations

Pages

Novel Aliphatic Lipid-Based Diesters for use in Lubricant Formulations
Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects. Author Keywords: Crystallization, Phase behaviour, Rheology, Structure-Function, Thermogravimetric analysis, Vegetable Oils
Effect of Water Surface Simulated Rain Drop Impacts on Water to Air Chemical Transfers of Perfluorinated Carboxylic Acids (PFCAs)
Perfluorinated carboxylic acids (PFCAs) are anthropogenic environmentally ubiquitous surfactants that tend to concentrate on water surfaces. This investigation looked at the effect of simulated rain on the atmospheric concentration of a suite of PFCAs (C2 - C12) above the bulk water system. Increased air concentrations of all PFCAs were detected during simulated rain events. Long chain PFCAs (>C8) were found to be much more concentrated in the air above the bulk water system than their short chain counter parts (
Development and Use of Passive Samplers for Monitoring Dissolved and Nanoparticulate Silver in the Aquatic Environment
Silver nanoparticles (nAg) are the largest and fastest growing class of nanomaterials, and are a concern when released into aquatic environments even at low μg L-1+). Diffusive gradient in thin films (DGT) with a thiol-modified resin were used to detect labile silver and carbon nanotubes (CNT-sampler) were used to measure nAg. Laboratory uptake experiments in lake water provided an Ag+ DGT diffusion coefficient of 3.09 x 10 -7 cm2s-1 and CNT sampling rates of 24.73, 5.63, 7.31 mL day-1, for Ag+, citrate-nAg and PVP-nAg, respectively. The optimized passive samplers were deployed in mesocosms dosed with nAg. DGT samplers provided estimated Ag+ concentrations ranging from 0.15 to 0.98 μg L-1 and CNT-samplers provided nAg concentrations that closely matched measured concentrations in water filtered at 0.22 μm. Author Keywords: ICP-MS, mesocosms, nanoparticles, nanosilver, passive sampling
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish Alena Kathryn Davidson Celsie A novel dynamic fugacity model is developed that simulates the uptake of chemicals in fish by respiration as applies in aquatic toxicity tests. A physiologically based toxicokinetic model was developed which calculates the time-course of chemical distribution in four tissue compartments in fish, including metabolic biotransformation in the liver. Toxic endpoints are defined by fugacity reaching a 50% mortality value. The model is tested against empirical data for the uptake of pentachloroethane in rainbow trout and from naphthalene and trichlorobenzene in fathead minnows. The model was able to predict bioconcentration and toxicity within a factor of 2 of empirical data. The sensitivity to partition coefficients of computed whole-body concentration was also investigated. In addition to this model development three methods for predicting partition coefficients were evaluated: lipid-fraction, COSMOtherm estimation, and using Abraham parameters. The lipid fraction method produced accurate tissue-water partitioning values consistently for all tissues tested and is recommended for estimating these values. Results also suggest that quantum chemical methods hold promise for predicting the aquatic toxicity of chemicals based only on molecular structure. Author Keywords: COSMOtherm, fish model, fugacity, Partition coefficient, tissue-water, toxicokinetics

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Chemistry
  • (-) ≠ Gao, Stephanie
  • (-) ≠ Corcoran, Shawna Karen Jackson
  • (-) ≠ Soodoo, Navindra

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/24