Graduate Theses & Dissertations

Patterns of Vegetation Succession on Nickel-Copper Mine Tailings near Sudbury, Ontario
Natural establishment of vegetation on mine tailings is generally limited. Understanding the processes leading to vegetation germination and the survival mechanisms that vegetation species employ in these harsh environments is critical to future remediation efforts. As metalliferous mine tailings are generally nutrient-poor, high in harmful metals, and acidic, vegetation species require distinct mechanisms to germinate and survive in such harsh environments. In this study, edaphic and biotic factors linked to vegetation establishment and diversity were studied at two nickel-copper (Ni-Cu) tailings sites near Sudbury, Ontario. One site had experienced minimal treatment, and the second site was split into partial (hand-distribution of lime) and full (lime, fertilizer, seeding) treatment areas. Tailings were generally acidic, low in organic matter and “available” nutrients, and high in metals such as Al, Cu, Fe, and Ni, but these physical and chemical properties were extremely spatially variable. At both sites, vegetation was distributed in sparse patches, with the greatest diversity in treated areas. There was no clear link between metals and vegetation establishment/diversity at the sites. The primary limiting nutrients on the tailings were phosphorous (P) and potassium (K), and while there were areas of increased soil fertility at the sites, they were not clearly associated with increased vegetation diversity. Both traditional ecological succession and nucleation succession patterns were observed on the site, and the chief species associated with nucleation were primary colonizing trees such as B. papyrifera and P. tremuloides. The relationship between B. papyrifera nutrient retranslocation and tailings restoration was assessed and while B. papyrifera at the sites were deficient in P and K, the trees efficiently retranslocated both P and K during senescence. This research can provide insight into possibilities for future revegetation of similar tailings, enabling industry to make educated decisions when choosing where and how to revegetate, mimicking natural succession patterns. Author Keywords: Acid-mine drainage, Betula papyrifera, ecosystem health, metals, Sudbury, tailings
Effects of flooding on nutrient budgets and ecosystem services
Increases in flooding due to anthropogenic influences such as climate change and reservoir creation will undoubtedly impact aquatic ecosystems, affecting physical, chemical, and biological processes. We used two approaches to study these impacts: a whole-ecosystem reservoir flooding experiment and a systematic literature review. In the whole-ecosystem experiment, we analyzed the impact of flooding on nutrient release from stored organic matter in an upland forest. We found that flooded organic matter produced N (nitrogen) and P (phosphorus), but that more N was released relative to P, increasing the N:P ratio over time. In the systematic literature review, we linked small (<10 year recurrence interval) and extreme (>100 year recurrence interval) floods to changes in 10 aquatic ecosystem services. Generally, extreme floods negatively impacted aquatic ecosystem service provisioning, while small floods contributed positively. Overall, we found that flood impacts vary depending on ecosystem properties (organic matter content) and flood characteristics (magnitude). Author Keywords: ecosystem services, flooding, nutrients, reservoirs, rivers
ASSESSING THE IMPACT OF ATMOSPHERIC DEPOSITION AND HARVEST INTENSITY ON SOIL ACIDITY AND NUTRIENT POOLS IN PLANTATION FORESTS
The objective of this thesis was to assess the influence of anthropogenic sulphur (S) and nitrogen (N) deposition, and harvesting on soil acidity and calcium (Ca2+), magnesium (Mg2+), potassium (K+) and N soil pools in plantation forest soils in Ireland. The response to reductions in anthropogenic S deposition was assessed using temporal trends in soil solution chemistry at two long-term monitoring plots--one on a blanket peat, the other on a peaty podzol. At the peat site, there was little evidence of a response to reductions in throughfall non marine sulphate (nmSO42-) and acidity; soil water acidity was determined by organic acids. In addition, temporal variation in soil water did not respond to that in throughfall. In the podzol, reductions in anthropogenic S and H+ deposition led to a significant improvement in soil water chemistry at 75 cm; pH increased and total aluminum (Altot) concentrations declined. The impact of harvest scenarios on exchangeable Ca2+, Mg2+ and K+ pools was assessed using input-output budgets at 40 sites (30 spruce, 10 pine). Harvest scenarios were stem-only harvest (SOH), stem plus branch harvest (SBH) and stem, branch and needle harvest (whole-tree harvesting; WTH). Average K+ and Mg2+ budgets were positive under these scenarios. However, exchangeable K+ pools were small and due to uncertainty in K+ budgets, could be depleted within one rotation. Average Ca2+ budgets for spruce were balanced under SOH, but negative under SBH and WTH. Nitrogen deposition was high, between 5 and 19 kg N ha-1 yr-1, but was balanced by N removal in SOH. However, N budgets were under SBH and WTH, indicating that these harvesting methods would lead to depletion of soil N over the long-term. Finally, monitoring of N cycling at a spruce plot indicated that N deposition was contributing to large NO3- leaching, and as such the site was N saturated. However, N cycling did not fit the criteria of the N saturation hypothesis; instead leaching was directly related to N deposition and supported the model of kinetic N saturation. Author Keywords: acidic deposition, base cations, input-output budgets, Ireland, nitrogen, whole-tree harvesting
regional comparison of the structure and function of benthic macroinvertebrate communities within Precambrian Shield and St. Lawrence lowland lakes in south-central Ontario
Benthic macroinvertebrtes (BMI) are functionally important in aquatic ecosystems; as such, knowledge of their community structure and function is critical for understanding these systems. BMI were sampled from ten lakes in each of two regions of south-central Ontario to investigate which chemical and physical variables could be shaping their community structure and function. Ten Precambrian Shield lakes in the Muskoka-Haliburton region, and ten St Lawrence lowland lakes in the Kawartha lakes region were sampled. These lakes are geologically and chemically distinct, creating natural chemical and physical gradients within and between both regions. Community function was assessed using stable isotope analysis to elucidate carbon transfer dynamics (δ13C) and food web interactions (δ15N). It was predicted that the BMI from Shield lakes would have a δ13C signature indicative of allochthonous carbon subsidies, whereas the lowland lake BMI signatures would reflect autochthonous production. Additionally, it was predicted that the food web length (measured in δ15N units) would be different in Shield and lowland lakes. Both of these predictions were supported; however, the data indicate that δ13C signatures are more likely influenced by catchment geology (represented by bicarbonate concentration) than the extent of allochthony. The best predictor of food web length was found to be region. To assess BMI community structure, taxonomic richness, %EPT (% Ephemeroptera, Plecoptera, Trichoptera; a water quality index), and distribution of functional feeding groups were examined. Based on chemistry it was expected that the Shield lakes would be more speciose, and of greater water quality (relatively lower nutrient levels). These predictions were rejected; since there were no significant regional differences in taxonomic richness or biologically inferred water quality (%EPT). However, sediment size was found to best explain the variability in both metrics, with greater richness and %EPT found at sites with medium and small substrates than those with large substrates. Significant regional differences were found in the distribution of functional feeding groups. Most notably, there were significantly greater proportions of scrapers and shredders in the lowland and Shield lakes, respectively. Based on the feeding mechanisms of these invertebrates it can be inferred that allochthonous subsidies are likely of greater importance to Shield lake BMI communities than those of the lowland lakes; supporting the carbon transfer prediction. These findings provide insight about the structure and function of BMI communities from two dominant lake types in Ontario, and could be useful when determining how future chemical and physical changes will impact these communities. Author Keywords: benthic macroinvertebrates, community function, community structure, Precambrian Shield, stable isotopes, St. Lawrence lowlands

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Bell
  • (-) ≠ Theory, Culture and Politics
  • (-) = Ecology
  • (-) ≠ Anderson
  • (-) ≠ Botany
  • (-) ≠ Smith
  • (-) ≠ May
  • (-) = Biogeochemistry

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/16

Degree Discipline

Subject (Topic)