Graduate Theses & Dissertations

Investigation of fugitive dust emissions from nepheline syenite mine tailings near Nephton, Ontario
A set of experiments was designed to investigate the factors—atmospheric and surficial—controlling fugitive dust emissions from the tailings ponds of UNIMIN Canada, a mining company that extracts and produces nepheline syenite (feldspar) at two adjacent sites (Nephton and Blue Mountain) located north of Havelock, Ontario. Using wind tunnel measurements, the combined influence of relative humidity and temperature (represented by the absolute matric potential, |Ψ|) on dust emission was quantified and modelled. About 300 experimental runs were conducted under various conditions of wind speed (4.5-6.25 ms-1), temperature (0-30oC) and relative humidity (10-70%). Generally, dust flux decreased as a logarithmic function of matric potential, with dust emission strongly suppressed for RH > 60% or |Ψ|<70 MPa. Field measurements also confirmed the role of relative humidity in suppressing dust emission. Irrigation, which is widely used by mines to control dust emissions, reduced ambient dust concentration at the study site only about 60% of the time, with the highest mitigation efficiencies (average of 90%) occurring when the total depth of water applied intermittently over a few hours was greater than 10 mm. In the absence of emergent vegetation, the terrestrial laser scanning (TLS) technique proved to be a promising method for detecting and estimating both spatial and temporal moisture content changes in the field environment, particularly for the very thin surface layer, which is the most important layer for dust emission. It is hoped that the results from this study will help mines to optimize their dust management programs for the range of climate and topographic conditions found at their sites, and also serve as a source of useful information and input data for atmospheric dispersion models, such as AERMOD and CALPUFF, whose accuracy depends on the quality of the input data such as the emission rate. Author Keywords: dust mitigation efficiency, Fugitive dust, nepheline syenite, relative humidity, tailings, terrestrial laser scanning

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Master of Education
  • (-) ≠ Nocera
  • (-) = Environmental and Life Sciences
  • (-) = Environmental science
  • (-) = Atmospheric sciences
  • (-) = Ogungbemide, Damilare Immanuel

Filter Results

Date

2014 - 2024
(decades)
Specify date range: Show
Format: 2024/05/16

Subject (Topic)