Graduate Theses & Dissertations

Pages

Clonal structure and mating patterns in a natural population of Sagittaria latifolia
Increased plant size is expected to have negative consequences for mating by increasing pollen transfer among the same plant. However, recent theoretical studies have demonstrated that this may not be true for clonal plants. Instead, clonal expansion could enhance outcrossing opportunities without increasing selfing by reducing distances to potential mates. I investigated how the spatial structure of clones influences patterns of pollen dispersal, selfing rates and siring success in a natural population of Sagittaria latifolia. I found that pollen dispersal distances typically exceeded the spatial extent of clones and there was a positive association between clone size and the likelihood that clones were intermingled. Together, this resulted in a weak positive association between clone size and selfing rates, and a strong positive association between clone size and outcross siring success. This is the first empirical support for the theoretical expectation that any negative effects of selfing in large clones might be offset by increased siring success. Author Keywords: clonal growth, fitness gain curve, geitonogamy, plant mating, plant reproductive ecology, sex allocation theory
Differences and similarities in exploration and risk-taking behaviours of two Myotis bat species.
AbstractDifferences and similarities in exploration and risk-taking behaviours of two Myotis bat species. Laura Michele Scott Behaviours that are repeatable across circumstances and time determine an individual’s personality. Personality and behavioural variation are subject to selective pressures, including risks related to the use of different habitat types. I explored the ecological and evolutionary consequences of habitat selection by comparing the behaviour of two sympatric bat species, Myotis leibii and M. lucifugus. These species display overlap in roosting preferences, however, M. leibii tend to roost in crevices on the ground, while M. lucifugus tend to roost in crevices or cavities that are raised off the ground. I hypothesized that the habitat selection patterns of these two species create behavioural reaction norms at the species level. I predicted that ground roosting behaviour favours bolder personality and more exploratory and active traits when compared with bats that do not ground roost. I examined inter- and intra-specific variation in behaviour using a modified, three-dimensional open-field test and quantified the frequency and duration of behaviours such as flying, landing, and crawling. Bats were continuously video-recorded over 1-hour nocturnal and diurnal trials. I used a priori mixed models with combinations of individual characteristics and life-history traits to select the models that best describe each species. We found that M. leibii (n = 15) displayed more exploratory and bolder behaviours than M. lucifugus while on the ground (n = 21) and higher overall activity during the trial. I also found that M. leibii displayed crawling behaviours and movements consistent with foraging while on the ground which is a rare behaviour in bats and only observed in a few species (Desmodus rotundus and Mystacina tuberculate to my knowledge). Future research should explore biomechanical adaptations associated with ground-foraging in M. leibii. Author Keywords: Bats, Behaviour, Exploration, Myotis leibii, Myotis lucifugus, Roosting
Contributions of Mayflies (EPHEMEROPTERA
Walleye (Sander vitreus) are an ecologically and economically significant fish harvestedby recreational and commercial fisheries across Ontario. Adult Walleye are piscivores, but anecdotal evidence from anglers suggests that Walleye often target aquatic insects such as mayfly larvae (Ephemeroptera). My research examined the diet of Walleye caught from May to September in Lake St. Joseph in northern Ontario. I examined the stomach contents of angle harvested Walleye to identify the prey over two summers. Through morphological analysis of stomach contents, mayflies were found to be a significant prey source for Walleye, during larval emergence events in early summer, and to a lesser extent throughout the rest of the summer season. These findings are important for long term management of Walleye populations and associated resources. I also assess the potential and problems of Walleye management and research from my experiences of having worked with industry, government, and university partners on this project. Author Keywords: alternative prey, Food web interactions, invertebrate, piscivore, Predator prey interactions
Effect of Attending a Virtual Oncology Camp on Childhood Cancer Patient's Pyshcosocial Functioning and Parental Stress - A Pilot Study
Objectives/purpose: The current study examined whether attending a 1-month virtual oncology camp (VOC) improved resilience and hope in childhood cancer patients and parental/caregiver stress. Methods:Childhood cancer patients/survivors and their parent/caregivers enrolled for VOC, participated in an online anonymous survey: before, after and 3-months after VOC. The survey included the Child and Youth Resilience Measure (CYRM) and the Snyder’s Children’s Hope Scale (CHS) for the childhood cancer patients/survivors and the Pediatric Inventory for Parents (PIP) for parent/caregivers. Results:CYRM scores increased from T1 to T2 (d=0.86). Compared to T1, at T2 CHS scores also increased (d=1.33). Both CHS and CYRM scores remained higher at T3 compared with T1 (d=1.34; d=0.86). There were no changes in PIP scores between any time points. Conclusion and significance: Our study demonstrated that participation in a VOC improved children’s resilience and hope but did not change parental stress. Highlighting the clinical significance of these VOCs and the impacts they have on childhood cancer patients/survivors. Author Keywords: cancer, children, hope, parental stress, resilience, virtual oncology camp
Linking large scale monitoring and spatially explicit capture–recapture models to identify factors shaping large carnivore densities
Understanding the spatial ecology of large carnivores in increasingly complex, multi-use landscapes is critical for effective conservation and management. Complementary to this need are robust monitoring and statistical techniques to understand the effect of bottom-up and top-down processes on wildlife population densities. However, for wide-ranging species, such knowledge is often hindered by difficulties in conducting studies over large spatial extents to fully capture the range of processes influencing populations. This thesis addresses research gaps in the above themes in the context of the American black bear (Ursus americanus) in the multi-use landscape of Ontario, Canada. First, I assess the performance of a widely adopted statistical modelling technique – spatially explicit capture-recapture (SECR) – for estimating densities of large carnivores (Chapter 2). Using simulations, I demonstrate that while SECR models are generally robust to unmodeled spatial and sex-based variation in populations, ignoring high levels of this variation can lead to bias with consequences for management and conservation. In Chapter 3, I investigate fine-scale drivers of black bear population density within study areas and forest regions by applying SECR models to a large-scale, multi-year black bear spatial capture-recapture dataset. To identify more generalizable patterns, in Chapter 4 I then assess patterns of black bear density across the province and within forest regions as a function of coarse landscape-level factors using the same datasets and assess the trade-offs between three different modeling techniques. Environmental variables were important drivers of black bear density across the province, while anthropogenic variables were more important in structuring finer-scale space use within study areas. Within forest regions these variables acted as both bottom-up and top-down processes that were consistent with ecological influences on black bear foods and intensity of human influences on the species’ avoidance of developed habitats. Collectively, this thesis highlights the opportunities and challenges of working across multiple scales and over expansive landscapes within a SECR framework. Specifically, the multi-scale approach of this thesis allows for robust inference of the mechanisms structuring fine and broad scale patterns in black bear densities and offers insight to the relative influence of top-down and bottom-up forces in driving these patterns. Taken together, this thesis provides an approach for monitoring large carnivore population dynamics that can be leveraged for the species conservation and management in increasingly human-modified landscapes. Author Keywords: animal abundance, black bear, capture-recapture, density estimation, statistical ecology, wildlife management
SARS-CoV-2 Protein-based Detection Using Localized Surface Plasmon Resonance
During the COVID-19 pandemic, nucleic acid and antibody-based testing methods were heavily relied upon, but can be costly, time-consuming and exhibit high false -negative and -positive rates. Thus, alternative strategies are needed. Viral antigens such as the SARS-CoV-2 spike (S) glycoprotein are critical in the function of the virus and useful as diagnostic biomarkers for viral infections. For biosensing applications, aptamers are suitable high-affinity and cost-effective binding partners for their specific targets. Using localized surface plasmon resonance (LSPR), real-time, rapid acquisition of results can be achieved, essential for improving the efficacy of a sensor. Herein, LSPR aptamer sensors were fabricated for the detection of the SARS-CoV-2 protein. Data indicate that the best performing aptasensor was the streptavidin-biotin sensor, while the current gold aptasensor exhibited lower sensitivity and the fabrication of the carboxyl aptasensor was unsuccessful. The S1 aptamer selectively bound the S1 protein with high binding affinity. Excellent shelf-life stability, reusability, and high recovery in complex matrices was also maintained. Additionally, a receptor binding domain (RBD) functionalized sensor was fabricated to examine the interactions with angiotensin converting enzyme 2 (ACE2), for future assessment of inhibitors used in drug therapies. Overall, LSPR has been demonstrated as a viable tool for measuring SARS-CoV-2 related aptamer-protein and protein-protein interactions, and this strategy may be applied to other viral or non-viral antigen targets. Author Keywords: Antigen-based Detection, Coronavirus, COVID-19, Inhibition, Localized Surface Plasmon Resonance, SARS-CoV-2
Exploring the Role of Natural Antisense Transcripts in the Stress Response of Ustilago maydis
Fungal pathogens adapt to environmental changes faster than their hosts, due in part to their adaptive mechanisms exhibited in response to stress. Ustilago maydis was used to investigate potential natural antisense transcript (NAT) RNA-mediated mechanisms that enhance fungal adaptation to stress. Of the 349 NATs conserved amongst U. maydis and two related smut fungi, five NATs were identified as having altered transcript levels in response to multiple stress conditions. Subsequently, antisense transcript expression vectors were created for select NATs and transformed into U. maydis haploid cells. When exposed to stress conditions, two antisense expressing mutant strains exhibited alterations in growth. RT-qPCR analysis of mRNA complementary to expressed NATs revealed no significant change in mRNA levels, which suggests NAT expression may influence stress response through dsRNA formation or other RNA mediated mechanisms. These results establish a basis for further investigations into the connection between NATs and the stress response of fungi. Author Keywords: natural antisense transcripts, non-coding RNAs, stress response, Ustilago maydis
Gene flow directionality and functional genetic variation among Ontario, Canada Ursus americanus populations.
Rapidly changing landscapes introduce challenges for wildlife management, particularly for large mammal populations with long generation times and extensive spatial requirements. Understanding how these populations interact with heterogeneous landscapes aids in predicting responses to further environmental change. In this thesis, I profile American black bears using microsatellite loci and pooled whole-genome sequencing. These data characterize gene flow directionality and functional genetic variation to understand patterns of dispersal and local adaptation; processes key to understanding vulnerability to environmental change. I show dispersal is positively density-dependent, male biased, and influenced by food productivity gradients suggestive of source-sink dynamics. Genomic comparison of bears inhabiting different climate and forest zones identified variation in genes related to the cellular response to starvation and cold. My thesis demonstrates source-sink dynamics and local adaption in black bears. Population management must balance dispersal to sustain declining populations against the risk of maladaptation under future scenarios of environmental change. Author Keywords: American black bear, Dispersal, Functional Genetic Variation, Gene Flow Directionality, Genomics, Local Adaptation
Determinants of Breeding Bird Diversity in Ontario's Far North
190 species of birds are known to breed in Ontario’s far north making the region an important nursery for boreal birds. Digital point count data were collected using two different autonomous recording units (ARUs): one model with two standard microphones to detect birds and anurans, and one model with one standard microphone and one ultrasonic microphone for detecting bats. ARUs were deployed either in short or long-term plots, which were four to six days or approximately 10 weeks, respectively. I assessed differences in breeding bird richness detections between ARU and plot types. I also tested the relative impact of the habitat heterogeneity and species-energy hypotheses in relation to breeding birds and created predictive maps of breeding bird diversity for Ontario’s far north. I found no difference in species richness estimates between the two ARU models but found that long-term plots detected about 7 more bird species and 1.5 more anuran species than short-term plots. I found support for both the species-energy and habitat heterogeneity hypotheses, but support for each hypothesis varied with the resolution of the analysis. Species-energy models were better predictors of breeding bird diversity at coarser resolutions and habitat heterogeneity models were better predictors at finer resolutions. Breeding bird diversity was highest in the Ontario Shield Ecozone compared with the Hudson Bay Lowlands Ecozone, but concentrated areas of higher diversity found in the Lowlands were associated with large rivers and the associated coastlines. Author Keywords: boreal birds, breeding birds, habitat heterogeneity, Hill diversity, Ontario, species-energy hypothesis
Forest Roost Use by Little Brown Bats (Myotis lucifugus) in Ontario
Roosts offer bats protection from predators, shelter from external environmental conditions, and a space where sociality, mating, and the rearing of young can occur. However, knowledge gaps still remain for many forest roosting species, such as the little brown bat (Myotis lucifugus) surrounding what roosts are selected, and what variables are influential at differing scales of selection. As a species-at-risk, identifying and predicting roost habitat selection may aid conservation and management. I identified forest roosts in a previously unexamined area of this species’ range using radio-telemetry, and measured tree-scale characteristics of located roosts. I then used a logistic model selection process with stand-scale variables to predict roost presence across forest stands. Height of trees in a given stand was the best predictor of roost presence - which may be linked to solar exposure and other thermal benefits. I then examined roost-level variables effecting the abundance of roosting bats in an artificial roosting environment (bat boxes). I found that temperature and social effects were both significant predictors of bat abundance, with warmer minimum temperatures in the box having a positive effect. These results suggest maternal bats may select roosts with higher minimum temperatures, likely due to the energetic benefits that may be gained over the course of reproduction. Author Keywords: forest roost, habitat selection, little brown bat, Myotic lucifugus, roost choice, stand selection
Electrochemical versus Chemical Oxidation of Bulky Phenols
Phenolic compounds are used in industry, such as agriculture and biotechnology, and inevitably end up in our environment. These compounds may serve as a phenolic precursor to produce raw materials for a wide range of applications. Chemical oxidation has been the common synthetic pathway to oxidize phenols and related compounds. However, traditional chemical approaches suffer from use of harsh chemicals, waste generation, and lack of reaction selectivity. Electrochemical synthesis has emerged as an alternative method to mitigate common challenges associated with organic synthesis. Herein, electrochemical oxidation of 2,6-diphenylphenol (DPP) and 2,2-dihydroxybiphenol (DHBP) was carried out and compared to traditional chemical oxidation. Contrasted with chemical oxidation, cyclic voltammetry of DPP resulted in a range of products based on the specific potential ranges used, whereas chemical oxidation of DHBP yield a dark-coloured polymeric product. The electrooxidation and chemical oxidation of DPP and DHBP resulted in a solution colour change, indicative of the formation of new, but different products monitored by UV-vis, and characterized by nuclear magnetic spectroscopy (NMR), X-ray single crystal diffraction, IR spectroscopy, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS). The data indicate that the synthetic outcomes are dependent on the synthetic methodology employed, and that electrooxidation and chemical oxidation can form products unique to the pathway utilized. Author Keywords: chemoselectivity, electrochemistry, phenols, radical, synthesis
Genetic Networks to Investigate Structure and Connectivity of Caribou at Multiple Spatial and Temporal Scales
Understanding genetic structure, connectivity, and movement of a species iscritical to management and conservation. Genetic network approaches allow the analysis of genetic information with flexibility and few prior assumptions. In chapter one, I tested the ability of individual-based genetic networks to detect fine-scale structure and connectivity in relation to sampling efforts. My findings revealed individual-based genetic networks can detect fine-scale genetic structure of caribou when using 15 highly variable microsatellite loci. Sampling levels less than 50% of the estimated population size resulted in highly disconnected networks which did not allow for accurate structure analysis; however community detection algorithms were robust in grouping closely related individuals despite low sampling. In chapter two, I used individual-based and population-based genetic networks to investigate structure, connectivity, and movement of caribou across a large study area in Western Canada. A community detection algorithm partitioned the population-based genetic network at multiple spatial scales which uncovered patterns of hierarchical genetic structure and highlighted patterns of gene flow. The hierarchical population structure results aligned with the known distribution of different caribou Designatable Units (DUs) and additional structure was found within each DU. Furthermore, individual-based networks that were constructed with a subset of samples from the Mackenzie Mountains region of the Northwest Territories revealed patterns of long-distance movement and high connectivity across the region. Author Keywords: Biological Conservation, Caribou, Community Detection, Connectivity, Genetic Networks, Structure

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ History
  • (-) ≠ Environmental science
  • (-) ≠ Canadian Studies and Indigenous Studies
  • (-) ≠ Biology
  • (-) = Master of Science
  • (-) = Environmental and Life Sciences

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/15