Graduate Theses & Dissertations

Eco-evolutionary Dynamics in a Commercially Exploited Freshwater Fishery
Fisheries assessment and management approaches have historically focused on individual species over relatively short timeframes. These approaches are being improved upon by considering the potential effects of both broader ecological and evolutionary processes. However, only recently has the question been raised of how ecological and evolutionary processes might interact to further influence fisheries yield and sustainability. My dissertation addresses this gap in our knowledge by investigating the role of eco-evolutionary dynamics in a commercially important lake whitefish fishery in the Laurentian Great Lakes, a system that has undergone substantial ecosystem change. First, I link the timing of large-scale ecological change associated with a species invasion with shifts in key density-dependent relationships that likely reflect declines in the population carrying capacity using a model selection approach. Then, using an individual-based model developed for lake whitefish in the southern main basin of Lake Huron, I demonstrate how ecosystem changes that lower growth and recruitment potential are predicted to reduce population productivity and sustainable harvest rates through demographic and plastic mechanisms. By further incorporating an evolutionary component within an eco-genetic model, I show that ecological conditions also affect evolutionary responses in maturation to harvest by altering selective pressures. Finally, using the same eco-genetic model, I provide a much-needed validation of the robustness of the probabilistic maturation reaction norm (PMRN) approach, an approach that is widely used to assess maturation and infer its evolution, to ecological and evolutionary processes experienced by exploited stocks in the wild. These findings together highlight the important role that ecological conditions play, not only in determining fishery yield and sustainability, but also in shaping evolutionary responses to harvest. Future studies evaluating the relative effects of ecological and evolutionary change and how these processes interact in harvested populations, especially with respect to freshwater versus marine ecosystems, could be especially valuable. Author Keywords: Coregonus clupeaformis, density-dependent growth, fisheries-induced evolution, individual-based eco-genetic model, Lake Huron, stock-recruitment
White-Tailed Fear
The primary method used to maintain white-tailed deer (Odocoileus virginianus) populations at densities that are ecologically, economically, socially, and culturally sustainable is hunter harvest. This method considers only the removal of animals from the population (the direct effect) and does not conventionally consider the costs imposed on deer as they adopt hunter avoidance strategies (the risk effect). The impact of risk effects on prey can exceed that of direct effects and there is interest in applying this concept to wildlife management. Deer are potential candidates as they have demonstrated behavioural responses to hunters. I explored the potential of such a management practice by quantifying how human decisions around hunting create a landscape of fear for deer and how deer alter their space use and behaviour in response. I used a social survey to explore the attitudes of rural landowners in southern and eastern Ontario towards deer and deer hunting to understand why landowners limited hunting on their property. I used GPS tracking devices to quantify habitat selection by hunters and hunting dogs (Canis familiaris) to better understand the distribution of hunting effort across the landscape. I used GPS collars to quantify the habitat selection of deer as they responded to this hunting pressure. I used trail cameras to quantify a fine-scale behavioural response, vigilance, by deer in areas with and without hunting. Human actions created a highly heterogeneous landscape of fear for deer. Landowner decisions excluded hunters from over half of the rural and exurban landscape in southern and eastern Ontario, a pattern predicted by landowner hunting participation and not landcover composition. Hunter decisions on whether to hunt with or without dogs resulted in dramatically different distributions of hunting effort across the landscape. Deer showed a high degree of behavioural plasticity and, rather than adopting uniform hunter avoidance strategies, tailored their response to the local conditions. The incorporation of risk effects into white-tailed deer management is feasible and could be done by capitalizing on a better understanding of deer behaviour to improve current management practices or by designing targeted hunting practices to elicit a landscape of fear with specific management objectives. Author Keywords: Brownian bridge movement models, hunting, landscape of fear, resource utilization functions, risk effects, white-tailed deer

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Physiology
  • (-) = Environmental and Life Sciences
  • (-) = Doctor of Philosophy
  • (-) = Natural resource management

Filter Results

Date

2014 - 2024
(decades)
Specify date range: Show
Format: 2024/05/15

Author Name

Name (Any)

Subject (Topic)