Graduate Theses & Dissertations

Pages

Spatial Dynamics of Wind Pollination in Broadleaf Cattail (Typha latifolia)
Natural populations of flowering plants rarely have perfectly uniform distributions, so trends in pollen dispersal should affect the size of the pollination neighbourhood and influence mating opportunities. Here I used spatial analysis to determine the size of the pollination neighbourhood in a stand of the herbaceous, wind-pollinated plant (Typha latifolia; broad-leaved cattail) by evaluating patterns of pollen production and seed set by individual cattail shoots. I found a positive correlation between pollen production and seed set among near-neighbour shoots (i.e., within 4 m2 patches of the stand; Pearson's r = 0.235, p < 0.05, df = 77) that was not driven by a correlation between these variables within inflorescences (Pearson's r = 0.052, p > 0.45, df = 203). I also detected significant spatial autocorrelations in seed set over short distances (up to ~ 5 m) and a significant cross-correlation between pollen production and seed set over distances of < 1 m indicating that the majority of pollination events involve short distances. Patterns of pollen availability were simulated to explore the shape of the pollen dispersal curve. Simulated pollen availability fit actual patterns of seed set only under assumptions of highly restricted pollen dispersal. Together, these findings indicate that even though Typha latifolia produces copious amounts of pollen, the vast majority of pollen dispersal was highly localized to distances of ~ 1 m. Moreover, although Typha latifolia is self-compatible and has been described as largely selfing, my results are more consistent with the importance of pollen transfer between nearby inflorescences. Therefore, realized selfing rates of Typha latifolia should largely depend on the clonal structure of populations. Author Keywords: clonal structure, correlogram, dispersal curves, pollination, spatial analysis, Typha latifolia
Fall Migratory Behaviour and Cross-seasonal Interactions in Semipalmated Plovers (Charadrius semipalmatus) Breeding in the Hudson Bay Lowlands, Canada
I used the Motus Wildlife Tracking System to monitor the fall migration behaviour and assess the underlying drivers of migration strategy in a small shorebird, the Semipalmated Plover (Charadrius semipalmatus), breeding at two subarctic sites: Churchill, Manitoba and Burntpoint Creek, Ontario, Canada. Semipalmated Plovers from both sites departed breeding areas between mid-July and early August, with females preceding males and failed breeders preceding successful breeders. Migrants showed between and within-population variation in migration behaviour, though birds from both sites tended to follow interior or coastal routes and congregated in three major stopover regions along the mid-Atlantic coast of North America. I found that later-departing birds had initial flight tracks oriented more toward the south, faster overall ground speeds, were less likely to stopover in North America, and stopped at lower latitudes, suggesting that later-departing individuals use aspects of a time-minimizing strategy on fall migration. My findings emphasize the importance of the mid-Atlantic coast for Semipalmated Plovers and establish connectivity between sites used during breeding and migration. Author Keywords: Breeding, Migration, Motus, Semipalmated Plover, Shorebird, Stopover
Expression and characterization of cytochrome b5 from Giardia lamblia
Giardia lamblia is an intestinal parasite found globally in freshwater systems that is responsible for endemic outbreaks of infectious diarrhea. As a unicellular parasite that lacks mitochondria, a respiratory chain and lives in the anaerobic environment of its host's intestine, Giardia was assumed for decades to lack heme proteins. However, its genome encodes several putative heme proteins, including three with sequence similarity to the cytochrome b5 family, referred to as Giardia cytochromes b5 (gCYTb5). Recombinant expression of one of these genes (gCYTb5-I), results in a protein (17-kDa) that is isolated with noncovalently bound heme. Resonance Raman and UV-visible spectra of gCYTb5-I in oxidized and reduced states resemble those of microsomal cytochrome b5, while sequence alignment and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the heme iron. The reduction potential of gCYTb5-I measured by cyclic voltammetry is -165 mV vs the standard hydrogen electrode and is relatively low compared to those of other family members. The amino- and carboxy-terminal sequences that flank the central heme-binding core of the gCYTb5 are highly charged and do not occur in other family members. An 11-kDa core gCYTb5-I variant lacking these flanking sequences was also able to bind heme; however, we observe very poor expression of this truncated protein as compared to the full-length protein. Author Keywords: b-type cytochrome, cytochrome b5, electron transfer protein, Giardia intestinalis, heme/heam protein, spectroelectrochemistry
Effect of SP600125 JNK Inhibitor on Cadmium-Treated Mouse Embryo Forelimb Bud Cells In Vitro
This study investigated the role of the JNK signaling pathway in cadmium-treated mouse embryo forelimb bud cells in vitro. Primary cultures of forelimb bud cells harvested at day 11 of gestation were pre-treated with JNK inhibitor SP600125, and incubated with or without CdCl2 for 15, 30, 60, 120 minutes and 24, 48 hours or 5 days. Endpoints of toxicity were measured through cell differentiation by Alcian Blue Assay and phosphorylation of JNK proteins by Western blot. The results demonstrated that, in the cell differentiation assay, inhibiting JNK activation by 20 μM SP600125 causes an enhanced toxic effect in limb cells and inhibits cell differentiation, whereas 2 μM decreases differentiated nodule numbers under both cadmium stress and normal conditions. In conclusion, the JNK pathway has an essential role in the differentiation processes of limb bud cells in normal growth conditions. Author Keywords: Cadmium, Cell Signaling, JNK, Limbs, Mouse Embryo, Teratology
Cytokinin biosynthesis, signaling and translocation during the formation of tumors in the Ustilago maydis-Zea mays pathosystem
Cytokinins (CKs) are hormones that promote cell division. During the formation of tumors in the Ustilago maydis-Zea mays pathosystem, the levels of CKs are elevated. Although CK levels are increased, the origins of these CKs have not been determined and it is unclear as to whether they promote the formation of tumors. To determine this, we measured the CK levels, identified CK biosynthetic genes as well as CK signaling genes and measured the transcript levels during pathogenesis. By correlating the transcript levels to the CK levels, our results suggest that increased biosynthesis and signaling of CKs occur in both organisms. The increase in CK biosynthesis by the pathosystem could lead to an increase in CK signaling via CK translocation and promote tumor formation. Taken together, these suggest that CK biosynthesis, signaling and translocation play a significant role during the formation of tumors in the Ustilago maydis-Zea mays pathosystem. Author Keywords: Biosynthesis, Cytokinins, Signaling, Translocation, Ustilago maydis, Zea mays
Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft, Ontario, Canada
ABSTRACT Calving site selection and fidelity in a restored elk (Cervus elaphus) herd in Bancroft Ontario, Canada. Michael R. Allan Parturition site selection by ungulates is believed to be influenced by forage abundance and concealment from predators. In 2011 and 2012, I used vaginal implant transmitters and movements to identify calving sites for 23 GPS collared elk (Cervus elaphus) from a restored herd. I tested the hypothesis that maternal elk used sites with higher forage and denser concealment compared to pre-calving sites at micro and macrohabitat levels. I detected no significant microhabitat differences from direct measurements of vegetation. At the macrohabitat scale, based on proximity of landcover classes, mean distances to hardwood forests was significantly less for calving (153 m) than pre-calving sites (198 m). Site fidelity is hypothesized to offer security in terms of familiarity to an area. I tested the hypothesis that females demonstrated fidelity to their previous year's location during pre-partum, parturition, post partum, breeding and winter periods. Elk were more philopatric during parturition and post partum than during breeding. Compared to winter elk were more philopatric during pre-partum, parturition and post-partum periods. Expressed as distance between consecutive-year calving locations, site fidelity varied with 27% of females exhibiting high (<1 km), 18% moderate and 55% (>2.9 km) low fidelity. I measured nearest-neighbour distances at calving time, exploring the hypothesis that females distance themselves from conspecifics. Elk increased the average distances to collared conspecifics during parturition; however, sample sizes were small. This strategy might influence calving site selection. Rapid movement prior to parturition, low site fidelity and spacing-out of females during parturition appear to be strategies to minimize predator risk and detection. Little evidence of selection for vegetation structure suggests this may not be limiting to these elk. Author Keywords: calving, elk, fidelity, movement, parturition, selection
Comparative Evaluation of Effective Population Size Genetic Estimation Methods in Wild Brook Trout (Salvelinus fontinalis) Populations
Effective population size (Ne) is a key concept in population genetics, evolutionary biology and conservation biology that describes an important facet of genetic diversity and the capacity of populations to respond to future evolutionary pressures. The importance of Ne in management and conservation of wild populations encouraged the development of numerous genetic estimators which rely on a variety of methods. Despite the number and diversity of available Ne methods, however, tests of estimator performance have largely relied on simulations, with relatively few tests based on empirical data. I used well-studied wild populations of brook trout (Salvelinus fontinalis) in Algonquin Park, Ontario as a model system to assess the comparative performance of multiple Ne estimation methods and programs, comparing the resultant Ne estimates against demographic population size estimates. As a first step, the genetic diversity and ancestry of wild brook trout populations was determined using 14 microsatellite loci. Genetic structure of brook trout populations showed variable contributions from historical supplemental stocking and also identified localized gene pools within and between watersheds, reflecting variable levels of connectivity and gene flow. Once the genetic ancestry and connectivity of populations had been resolved, single sample (point) and two samples (temporal) genetic estimators were used to estimate Ne of populations with pure native ancestry. Values obtained from genetic estimators utilizing both methods were variable within as well as among populations. Single sample (point) estimators were variable within individual populations, but substantially less than was observed among the temporal methods. The ratios of Ne to the estimated demographic population size (N) in small populations were substantially higher than in larger populations. Variation among estimates obtained from the different methods reflects varying assumptions that underlay the estimation algorithms. This research further investigated the effect of sampling effort and number of microsatellite loci used on Ne values obtained using the linkage disequilibrium (LD) estimation method. Ne estimates varied substantially among values generated from subsets of loci and genotyped individuals, highlighting the necessity for proper sampling design for efforts aiming to measure Ne. Despite the variation observed among and within estimation methods, the Ne concept is a valuable for the conservation and management of both exploited and endangered species. Author Keywords: Brook Trout, Effective population size, Genetic Diversity, Genetic Structure
Shorebird Stopover Ecology and Environmental Change at James Bay, Ontario, Canada
I examined how shorebirds respond to environmental change at a key subarctic migratory bird stopover site, the southwestern coast of James Bay, Ontario, Canada. First, I investigated if the morphology of sandpipers using James Bay during southbound migration has changed compared to 40 years prior. I found shorter, more convex and maneuverable wings for sandpipers in the present-day compared to the historical monitoring period, which supports the hypothesis that wing length change is driven by increases in predation risk. Secondly, I assessed the relationship between migration distance, body condition, and shorebird stopover and migratory decisions. Species that travelled farther distances from James Bay to wintering areas migrated with more characteristics of a time-minimizing migration strategy whereas species that travelled shorter distances migrated with energy minimizing strategies. Body condition impacted length of stay, wind selectivity at departure, groundspeeds, and probability of stopover and detection in North America after departing James Bay. Thirdly, I examined annual variation in dry/wet conditions at James Bay and found that shorebirds had lower body mass in years with moderate drought. In the present-day, drought resulted in lower invertebrate abundance and refuelling rates of shorebirds during stopover, which led to shorter stopover duration for juveniles and a higher probability of stopover outside of James Bay for all groups except white-rumped sandpiper. Finally, I estimated the relative importance of intertidal salt marsh and flat habitats to the diets of small shorebirds and found that semipalmated and white-rumped sandpiper (Calidris pusilla and C. fuscicollis) and semipalmated plover (Charadrius semipalmatus) diets consist of ~ 40 – 75% prey from intertidal marsh habitats, the highest documented in the Western Hemisphere for each species. My research shows that James Bay is of high importance to white-rumped sandpipers, which are unlikely to stop in North America after departing James Bay en route to southern South America. Additionally, intertidal salt marsh habitats (and Diptera larvae) appear particularly important for small shorebirds in the region. My thesis shows that changing environmental conditions, such as droughts, can affect shorebird refuelling and stopover strategies. Author Keywords: body condition, diet, environmental change, migration, ornithology, stopover ecology
Genomic architecture of artificially and sexually selected traits in white-tailed deer (Odocoileus virginianus)
Understanding the complex genomic architecture underlying quantitative traits can provide valuable insight for the conservation and management of wildlife. Despite improvements in sequencing technologies, few empirical studies have identified quantitative trait loci (QTL) via whole genome sequencing in free-ranging mammal populations outside a few well-studied systems. This thesis uses high-depth whole genome pooled re-sequencing to characterize the molecular basis of the natural variation observed in two sexually selected, heritable traits in white-tailed deer (Odocoileus virginianus, WTD). Specifically, sampled individuals representing the phenotypic extremes from an island population of WTD for antler and body size traits. Our results showed a largely homogenous genome between extreme phenotypes for each trait, with many highly differentiated regions throughout the genome, indicative of a quantitative model for polygenic traits. We identified and validated several potential QTL of putatively small-to-moderate effect for each trait, and discuss the potential for real-world application to conservation and management. Author Keywords: evolution, extreme phenotypes, genetics, genomics, quantitative traits, sexual selection
Behavioural ecology and population dynamics of freshwater turtles in a semi-urban landscape at their northern range limit
Species are faced with a variety of challenges in the environment, including natural challenges, such as variability in ambient temperature, and anthropogenic threats, such as habitat transformation associated with urbanisation. Understanding how animals respond to these kinds of challenges can advance the field of behavioural ecology and guide management decisions for wild species. Yet, we still have limited understanding of the extent of natural and human-caused impacts on animal behaviour and population dynamics, and lack robust assessment of behaviour in free-ranging animals. Using novel miniaturised biologging technologies, I characterised and validated behaviour in two freshwater turtle species: Blanding’s turtles (Emydoidea blandingii) and Painted turtles (Chrysemys picta). Further, I investigated how these two ectothermic species navigate a thermally heterogeneous landscape near their northern range limit, by comparing selected and available ambient temperatures. I showed that turtles preferred locations that were, on average, warmer and less variable in temperature than the available environment, and that this thermal sensitivity was greatest early in the year, and at fine spatial scales that likely matched the species' perception of the environment. Lastly, I assessed whether urban development was compatible with long-term viability of a Blanding’s turtle population, by monitoring habitat change and turtle survival over one decade of ongoing residential and road development. I found that Blanding’s turtle habitat quantity and connectivity declined in the area, which coincided with high road mortality and severe declines in turtle survival and population size, especially in adult females. I concluded that urban development and current road mortality rates are incompatible with the long-term viability of this at-risk turtle population. Overall, my findings demonstrate the importance of variation in the thermal environment and anthropogenic impacts on habitat in shaping the behaviour and population dynamics of this species-at-risk. Author Keywords: animal behaviour, biologging, ectotherms, habitat selection, temperature, urbanisation
origin and ecological function of an ion inducing anti-predator behaviour in Lithobates tadpoles
Chemical cues are used commonly by prey to identify predation risk in aquatic environments. Previous work has indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in tadpoles. This thesis found that this ion species: (i) is produced by injured tadpoles; (ii) exhibits increased spectral intensity with higher tadpole biomass; and (iii) is not produced by starved predators. These results refute the hypothesis that the ion is a kairomone, and rather support its role as an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S-. Collision induced dissociation (CID) of ion m/z 501 formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, indicating the presence of sulfate. Green frog (Lithobates clamitans) tadpoles exposed to m/z 501, and an industrial analogue, sodium dodecyl sulphate (NaC12H25O4S), exhibited similar anti-predator responses, thereby suggesting the potential role of organic sulfate as a tadpole behavioural alterant. Author Keywords: Alarm cue, Amphibian, Chemical Ecology, Mass spectrometry, Predator-prey interactions
Variation in the δ15N and δ13C composition of POM in the Lake Simcoe watershed
The purpose of this study was to quantify the variation of baseline carbon and nitrogen stable isotope signatures in the Lake Simcoe watershed and relate that variation to various physicochemical parameters. Particulate organic matter samples from 2009 and 2011 were used as representatives of baseline isotopic values. Temporal data from two offshore lake stations revealed that δ15N of POM was lowest mid-summer and highest after the fall turnover. POM δ13C was variable throughout the summer before declining after fall turnover. Spatial data from the lake and the tributaries revealed that POM stable isotope signatures were highly variable. Various physicochemical parameters indicative of phytoplankton biomass were significantly positively correlated with POM δ15N and significantly negatively correlated with POM δ13C. The correlations were mostly significant in the tributaries, not the lake. Moreover, many of the correlations involving δ15N of POM were driven by extreme values in Cook's Bay and its tributaries. In general, it's likely that different processes or combination of processes were affecting the δ15N and δ13C POM in the Lake Simcoe watershed as physicochemical parameters alone could not explain the variability. Measuring the δ15N of ammonium and nitrate, as well as the δ13C of DIC would help discern the dominant nitrogen and inorganic carbon cycling processes occurring in the Lake Simcoe watershed. Author Keywords: δ13C, δ15N, isotopic baseline, particulate organic matter, spatial variation, stable isotopes

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Baldwin
  • (-) ≠ Environmental science
  • (-) = Environmental and Life Sciences

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/04/27