Graduate Theses & Dissertations

Pages

Impacts of Cover Crops on Soil Health, Soil Nitrogen Dynamics, and Cytokinin Profiles
In Ontario, the dominant cash crop rotations consist of soybean (SB), which is a leguminous crop grown in rotation with maize (MZ) and winter wheat (WW). In addition to these crops, some farmers integrate cover crops (CC) into crop rotation, especially during the fallow period and winter seasons, to reduce nitrogen (N) losses via nitrate (NO3-) leaching and emission of N2 and the greenhouse gas nitrous oxide (N2O). This thesis focused on understanding the impact of crop phases in a MZ-(SB-WW)-CC rotation on the abundance of N-cycling bacterial communities that mediate nitrification and denitrification pathways. In addition, the influence of CCs on soil cytokinin (CK) profiles, which are plant growth-promoting hormones, were studied in a greenhouse trial to assess their potential impacts when integrating CCs into crop rotations. In particular, the relationship between traditional soil health parameters and the soil CK profiles was studied to understand how CKs might reflect biotic interactions and soil vitality. Results indicate N fertilizer application mono ammonium phosphate (MAP) and starter N:P: K (24:6:24) during WW planting in fall largely supported nitrifying bacterial communities (amoA) and potentially contributed to NO3- leaching. Management of MZ, which included spring-applied MAP resulted in larger denitrifying (nirK) bacterial communities, increasing the potential risk of N-loss via emission of dinitrogen gas (N2) and greenhouse gas N2O. However, CC soils had significantly lower nirK than MZ, reflecting the importance of strong and deep root systems of CCs, which have a higher ability to scavenge the substrates for denitrifying communities (NO3-). This highlights the importance of growing CCs in reducing the potential risk for N-loss via leaching and denitrification. Additionally, in the greenhouse trial, the ability of CCs to affect CK was detected, highlighting the importance of integrating CC in crop rotations. This is particularly noteworthy, given that total CK profiles showed strong associations with traditional soil health parameters such as labile or active carbon and soil microbial community diversity. It was concluded that total soil CK can be used as a novel and dynamic soil health measure. Future research on quantifying N2O fluxes and levels of NO3- in leachates would provide a more precise understanding of the impact of different crop rotation phases on N-dynamics in these fields. Further studies on single or combined measures of soil CKs are warranted to develop its potential as a practical and effective soil health parameter. Author Keywords: Cover crops, Crop rotations, Cytokinin hormone, Nitrogen Cycle, qPCR, Soil health
Exploring the Role of Natural Antisense Transcripts in the Stress Response of Ustilago maydis
Fungal pathogens adapt to environmental changes faster than their hosts, due in part to their adaptive mechanisms exhibited in response to stress. Ustilago maydis was used to investigate potential natural antisense transcript (NAT) RNA-mediated mechanisms that enhance fungal adaptation to stress. Of the 349 NATs conserved amongst U. maydis and two related smut fungi, five NATs were identified as having altered transcript levels in response to multiple stress conditions. Subsequently, antisense transcript expression vectors were created for select NATs and transformed into U. maydis haploid cells. When exposed to stress conditions, two antisense expressing mutant strains exhibited alterations in growth. RT-qPCR analysis of mRNA complementary to expressed NATs revealed no significant change in mRNA levels, which suggests NAT expression may influence stress response through dsRNA formation or other RNA mediated mechanisms. These results establish a basis for further investigations into the connection between NATs and the stress response of fungi. Author Keywords: natural antisense transcripts, non-coding RNAs, stress response, Ustilago maydis
Influence of nitrogen and sulfur on cadmium tolerance in Euglena gracilis
Heavy metal pollution threatens human and ecosystem health. E. gracilis was investigated for its potential use in bioremediation due to its tolerance for heavy metals and ability to sequester them from the environment. E. gracilis can remove metals by producing metal binding compounds enriched in sulfur and nitrogen. In this thesis, E. gracilis cultures that were pretreated with elevated levels of sulfur or nitrogen had increased tolerance to CdCl2 compared to non-pretreated cultures. RNA-sequencing revealed that both pretreatments led to transcript level changes and that exposure to CdCl2 led to further transcript level changes. Gene ontology (GO) enrichment analysis reflected changes in nitrogen and sulfur metabolism as well as physiological processes related to metal binding. The data from this thesis revealed important transcription level changes that occur when E. gracilis is challenged with CdCl2 and helps us understand how organisms adapt to heavy metal pollution in the environment. Author Keywords: bioremediation, Cadmium, Euglena gracilis, GO-enrichment, metal-binding, RNA-Sequencing
Interactome study of the Giardia intestinalis nuclear localized cytochrome b5
Giardia intestinalis is a waterborne enteric parasite that lacks mitochondria and the capacity for heme biosynthesis. Despite this, Giardia encodes several heme proteins, including four cytochrome b5 isotypes (gCYTB5-I – IV) of unknown function. The aim of this thesis is to gain insight into the function of the Giardia cytochrome b5 isotype III (gCYTB5-III) that is found in the nucleus, as first reported by our laboratory using immunofluorescence microscopy experiments with an isotype-III specific antibody. Nuclear localization of isotype-III is supported by two of my experiments: i) immunoblot analysis of crude cytoplasmic and nuclear enriched fractions of Giardia trophozoites; ii) association of gCYTB5-III with the insoluble fraction of Giardia lysates crosslinked with formaldehyde is reversed by DNase I treatment. To gain an understanding of the possible roles of gCYTB5-III, I performed immunoprecipitation (IP) experiments on lysates from Giardia trophozoites to identify its protein partners. Mass spectroscopy analysis of the immunoprecipitate identified proteins localized to the nucleus (RNA polymerase, DNA topoisomerase, histones, and histone modifying enzymes). Intriguingly, over 40% of the known mitosomal proteome, which functions in iron-sulfur (Fe-S) cluster assembly was also associated with gCYTB5-III. One of these proteins, the flavoenzyme GiOR-1, has been shown to mediate electron transfer from NADPH to recombinant gCYTB5-III. These IP results provide evidence that GiOR-1 and gCYTB5-III interact in vivo, and furthermore, suggest that some proteins in the mitosome could interact with those in the nucleus. I also found that DNA stress, caused by low concentrations of formaldehyde (0.1 – 0.2%) resulted in the increased expression of gCYTB5-III. Collectively these findings suggest a role of gCYTB5-III in Giardia's response to DNA stress and perhaps the formation of Fe/S clusters. Author Keywords: cluster, cytochrome, heme, iron, mitosome, nuclear
Differential expression of cytochrome b5s in Giardia intestinalis during nitrosative stress and encystation
The waterborne protozoan Giardia intestinalis cycles between the environmentally-resistant and infectious cyst and the metabolically-active trophozoite that adheres to the epithelial lining of the small intestine. Adhesion can trigger the innate immune response in epithelial cells, including the synthesis of the free radical nitric oxide (NO) that inhibits cell proliferation and encystation of trophozoites. In this work changes in protein expression of three Giardia isotypes of the redox heme protein cytochrome b5 (gCYTb5 I, II and III) were studied in response to either nitrosative stress or induction of encystation. Two nitrosative stressors, sodium nitrite and the NO donor DETA-NONOate, were used at sub-lethal concentrations (0.5 mM and 0.05 mM, respectively) that do not affect cell proliferation until later time points so that subtle changes in protein expression could be observed in the absence of other confounding factors. Nucleolar gCYTb5-I and nucleoplasmic gCYTb5-III expression patterns were similar in trophozoites exposed to either stressor, showing gradual increases in expression with peaks between 4 and 12 hours, which indicates these cytochromes respond to nitrosative stress and possibly to potential DNA damage in Giardia. In contrast, gCYTb5-II of the peripheral vacuoles, which are part of the endocytic pathway of Giardia, showed little change in expression in response to either stressor. However, changes in gCYTb5-II expression were observed in encysting trophozoites, with a 1.4-fold increase in protein levels at seven hours after induction of encystation, followed by a gradual decrease in expression. These changes are consistent with previous mRNA analysis done in our laboratory and suggest a role for gCYTb5-II in the increase in nutrient uptake during early encystation. Author Keywords: cytochrome, encystation, Giardia, heme, nitrosative, parasite
Characterizing the demographic history and prion protein gene variation to infer susceptibility to chronic wasting disease in a naïve population of white-tailed deer (Odocoileus virginianus)
Assessments of the adaptive potential of natural populations are essential for understanding and predicting responses to environmental stressors like climate change and infectious disease. The range of stressors species face in a human-dominated landscape, often have contrasting effects. White-tailed deer (Odocoileus virginianus, deer) are expanding in the northern part of their range following decreasing winter severity and increasing forage availability, caused by climate change. Chronic wasting disease (CWD), a prion disease affecting cervids, is likewise expanding and represents a major threat to deer and other cervids We obtained tissue samples from free-ranging deer across their native range in Ontario, Canada which has yet to detect CWD in wild populations of cervids. High throughput sequencing was used to assess neutral genomic variation and variation in the gene responsible for the protein that misfolds into prions when deer contract CWD, known as the PRNP gene. Neutral variation revealed a high number of rare alleles and no population structure, consistent with an expanding population of deer. Functional genetic variation revealed that the frequencies of variants associated to CWD susceptibility and disease progression were evenly distributed across the landscape and the frequencies were consistent with deer populations not infected with CWD. These findings suggest that an observable shift in PRNP allele frequencies likely coincides with the start of a novel CWD epidemic. Sustained surveillance of genomic and genetic variation can be a useful tool for CWD-free regions where deer are managed for ecological and economic benefits. Author Keywords: Canadian wildlife, population genetics, prion, PRNP, RADseq, ungulate
Daphnia pulicaria responses to temperature and nutrients stress
Warming climates have had various consequences on terrestrial and aquatic food webs that are expected to persist. There is evidence suggesting that certain organisms are better equipped to handle changing climates compared to others. Therefore, the purpose of my thesis was to study the adaptability of Daphnia under temperature stress and nutrient limitation. First, to examine the effects of dietary phosphorus limitation and temperature on daphniid life-history and population growth, a series of experiments were conducted in the laboratory. In general, I found that Daphnia body growth rates and life-history traits to food carbon to phosphorus (C:P) ratios change with temperature. Next, I identified a protocol to limit the genomic DNA (gDNA) from ribonucleic acid (RNA) extractions. I found that using a modified phenol-chloroform extraction protocol was the most effective way to remove gDNA from extracted Daphnia RNA samples. Overall, results from this study show that temperature and food quality interactions are more complicated than previously thought. Furthermore, the RNA extraction protocol developed will be useful in future studies examining gene expression responses in Daphnia. Author Keywords: ecological stoichiometry, gene expression, life-history, nutrient limitation, RNA puritiy, temperature
Effect of Nitrosative Stress on Heme Protein Expression and Localization in Giardia Intestinalis
The parasitic protist Giardia intestinalis has five heme proteins: a flavohemoglobin and several isotypes of cytochrome b5. While the flavohemoglobin has a role in counteracting nitric oxide, the functions of the cytochromes (gCYTb5s) are unknown. In this study, the protein level and cellular localization of three gCYTB5 isotypes (gCYTb5-I, II and III) and flavohemoglobin were examined in Giardia trophozoites exposed to three nitrosative stressors at two different concentrations: nitrite (20 mM, 0.5 mM); GSNO (2 mM, 0.25 mM) and DETA-NONOate (2 mM, 0.05 mM). An increase in protein levels was observed for gCYTb5-II with all stressors at both concentrations. However, the effects of these nitrosative stressors on gCYTb5-I and III were inconclusive due to the variation among the replicates and the poor detection of gCYTb5- III on western blots. The protein level of the flavohemoglobin also increased in response to the three stressors at the low concentrations of stressors that were tested. Only the cellular localization of gCYTb5-I changed in response to nitrosative stress, where it moved from the nucleolus to the nucleus and cytoplasm. This response was extremely sensitive and occurred at the lower doses of the three stressors, suggesting that gCYTb5-I may be involved in a nucleolar- based stress response. Author Keywords:
Altered Hippocampal Regulation of Immediate Early Genes after Pentylenetetrazol-Induced Seizures
Seizures induce long-term changes in gene expression in the hippocampus. Experimental evidence has demonstrated a significant effect of epileptic activity on the activity of neurons that participate in complex cognitive and behavioural processes. The present series of experiments involving kindling with subconvulsive doses of PTZ demonstrates a link between seizures and altered immediate early gene expression within the hippocampus and dentate gyrus. In addition, newborn hippocampal neurons were shown to have decreased induction of plasticity-related genes, suggesting deficits in activity-dependent recruitment. These findings may shed light on the mechanisms underlying epileptogenesis and epilepsy-related hippocampal dysfunction in human patients. Author Keywords: hippocampus, IEGs, kindling, neurogenesis, seizures
Development of genetic profiles for paternity analysis and individual identification of the North Atlantic right whale (Eubalaena glacialis)
The endangered North Atlantic right whale (Eubalaena glacialis) has been internationally protected from whaling since 1935 but recovery has been slow compared to the southern right whale (Eubalaena australis) due to anthropogenic mortalities and poor reproduction. Prey availability, genetic variability, and alleles of genes associated with reproductive dysfunction have been hypothesized to contribute to low calf production. The North Atlantic Right Whale DNA Bank and Database contains 1168 samples from 603 individuals. I added 115 new genetic profiles to the database which now contains profiles for 81% of individuals alive since 1980. Paternity assignments using these profiles resulted in 62% of sampled calves being assigned a father and only 38% of candidate males being assigned a paternity. This may suggest false exclusion due to genotyping errors or the existence of an unknown group of males. The use of the DNA database allowed for the identification of 10 deceased individuals which has implications for identifying cause of death and reducing mortalities. However, genetic identification is dependent on the time of post-mortem sample collection which influences DNA quantity and quality. An assessment for variations in methylenetetrahydrofolate reductase, a candidate gene associated with reproductive dysfunction, revealed six females heterozygous for a synonymous A/T variant in exon four which may influence reproductive success through changes in enzyme production, conformation or activity. Author Keywords: Eubalaena glacialis, Forensic Identification, Genetic Profiling, North Atlantic Right Whale, Paternity, Reproductive Dysfunction
Comparative phylogeography in conservation biology
Phylogeographic histories of taxa around the Great Lakes region in North America are relevant to a range of ongoing issues including conservation management and biological invasions. In this thesis I investigated the comparative phylogeographic histories of plant species with disjunct distributions and plant species with continuous distributions around the Great Lakes region; this is a very dynamic geographic area with relatively recent colonisation histories that have been influenced by a range of factors including postglacial landscape modifications, and more recently, human-mediated dispersion. I first characterized four species that have disjunct populations in the Great Lakes region: (Bartonia paniculata subsp. paniculata, Empetrum nigrum, Sporobolus heterolepis, and Carex richardsonii). Through comparisons of core and disjunct populations, I found that a range of historical processes have resulted in two broad scenarios: in the first scenario, genetically distinct disjunct and core populations diverged prior to the last glacial cycle, and in the second scenario more recent vicariant events have resulted in genetically similar core and disjunct populations. The former scenario has important implications for conservation management. I then characterized the Typha species complex (T. latifolia, T. angustifolia, T. x glauca), which collectively represent species with continuous distributions. Recent microevolutionary processes, including hybridization, introgression, and intercontinental dispersal, obscure the phylogeographic patterns and complicate the evolutionary history of Typha spp. around the Great Lakes region, and have resulted in the growing dominance of non-native lineages. A broader geographical comparison of Typha spp. lineages from around the world identified repeated cryptic dispersal and long-distant movement as important phylogeographic influences. This research has demonstrated that comparisons of regional and global evolutionary histories can provide insight into historical and contemporary processes useful for management decisions in conservation biology and invasive species. Author Keywords: chloroplast DNA, conservation genetics, disjunct populations, invasive species, phylogeography, postglacial recolonisation
Expression and characterization of cytochrome b5 from Giardia lamblia
Giardia lamblia is an intestinal parasite found globally in freshwater systems that is responsible for endemic outbreaks of infectious diarrhea. As a unicellular parasite that lacks mitochondria, a respiratory chain and lives in the anaerobic environment of its host's intestine, Giardia was assumed for decades to lack heme proteins. However, its genome encodes several putative heme proteins, including three with sequence similarity to the cytochrome b5 family, referred to as Giardia cytochromes b5 (gCYTb5). Recombinant expression of one of these genes (gCYTb5-I), results in a protein (17-kDa) that is isolated with noncovalently bound heme. Resonance Raman and UV-visible spectra of gCYTb5-I in oxidized and reduced states resemble those of microsomal cytochrome b5, while sequence alignment and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the heme iron. The reduction potential of gCYTb5-I measured by cyclic voltammetry is -165 mV vs the standard hydrogen electrode and is relatively low compared to those of other family members. The amino- and carboxy-terminal sequences that flank the central heme-binding core of the gCYTb5 are highly charged and do not occur in other family members. An 11-kDa core gCYTb5-I variant lacking these flanking sequences was also able to bind heme; however, we observe very poor expression of this truncated protein as compared to the full-length protein. Author Keywords: b-type cytochrome, cytochrome b5, electron transfer protein, Giardia intestinalis, heme/heam protein, spectroelectrochemistry

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Molecular biology
  • (-) ≠ Horlock-Roberts, Kathleen
  • (-) ≠ Cellular biology

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/05/23

Degree Discipline