Graduate Theses & Dissertations

Pages

Population Genetics and Scarification Requirements of Gymnocladus dioicus
The Kentucky coffee tree (Gymnocladus dioicus) is an endangered tree species native to the American Midwest and Southwestern Ontario. Significant habitat loss and fragmentation due to agricultural, industrial and urban development has caused gradual decline across its native range. The aims of this study were to investigate: (1) patterns of genetic diversity and, (2) genetic differentiation (3) relative levels of sexual vs. clonal reproduction, and (4) potential for reduced genetic diversity at range edge for wild G. dioicus populations. An analysis of variation at nine microsatellite loci from populations in the core of the species distribution in the U.S.A. and 4 regions of Southwestern Ontario indicated that G. dioicus has remarkably high genetic similarity across its range (average pairwise FST= 0.05). Germination trials revealed that the seed coats require highly invasive treatments (e.g. 17.93 mol/L H2SO4) to facilitate imbibition, with negligible germination observed in treatments meant to emulate prevailing conditions in natural populations. Low levels of sexual reproduction, high genetic similarity, and habitat degradation are issues that exist across the entire native range of G. dioicus. Author Keywords:
Hydrochemistry and critical loads of acidity for lakes and ponds in the Canadian Arctic
Threats such as climate change and increased anthropogenic activity such as shipping, are expected to negatively affect the Arctic. Lack of data on Arctic systems restricts our current understanding of these sensitive systems and limits our ability to predict future impacts. Lakes and ponds are a major feature of the Arctic landscape and are recognized as ‘sentinels of change’, as they integrate processes at a landscape scale. A total of 1300 aquatic sites were assessed for common chemical and physical characteristics. Geology type was found to be the greatest driver of water chemistry for Arctic lakes and ponds. Acid-sensitivity was assessed using the Steady State Water Chemistry model and a subset of 1138 sites from across the Canadian Arctic. A large portion of sites (40.0%, n = 455) were classified as highly sensitive to acidic deposition, which resulted in a median value of 35.8 meq·m―2·yr―1 for the Canadian Arctic. Under modelled sulphur deposition scenarios for the year 2010, exceedances associated with shipping is 12.5% (n = 142) and 12.0% (n = 136) for without shipping, suggesting that impacts of shipping are relatively small. Author Keywords: Acidic deposition, Arctic lakes, Critical loads, Shipping emissions, Steady-State Water Chemistry Model, Water chemistry
Protecting Sources of Drinking Water for the M'Chigeeng First Nation, Manioulin Island, Ontario
The potential impacts of domestic wastewater (DWW) on the source of drinking water for the M’Chigeeng First Nation were monitored as part of the development of a Source Water Protection plan. During a period of continuous overflow of the Gaaming Wastewater Lagoon serving the community, the chemical tracers, caffeine and sucralose were tracked in West Bay with Passive Organic Chemical Integrative Samplers (POCIS). From the results, we speculated that DWI impacts could have been from three possible DWW sources. POCIS deployed above and below the thermocline indicated a higher mean sucralose concentration of 2.52 ± 1.83 ng/L in the hypolimnion of West Bay relative to mean epilimnetic sucralose concentrations of 0.56 ± 0.02 ng/L, suggesting possible wastewater percolation with an estimated time of travel of 61.5 days. Microbial loads of 200 CFU/100 ml E. coli from the lagoon overflow into Mill Creek decreased to 60 CFU/100 ml before entering West Bay. West Bay’s wastewater assimilative capacity met Provincial Water Quality Objectives in the epilimnion and hypolimnion except for dissolved oxygen in the hypolimnion at 4.16 ± 1.86 mg/L, which is a threat to the onset of hypoxia for fish (i.e. <5 mg/L). Assimilative capacity results support a Fall lagoon discharge. Author Keywords: caffeine, drinking water, Passive Organic Chemical Integrative Samplers (POCIS), sucralose, thermocline, wastewater
Frog Virus 3
Understanding the maintenance and spread of invasive diseases is critical in evaluating threats to biodiversity and how to best minimize their impact, which can by done by monitoring disease occurrences across time and space. I sought to apply existing and upcoming molecular tools to assess fluctuations in both presence and strain variation of frog virus 3 (FV3), a species of Ranavirus, across Canadian waterbodies. I explored the temporal patterns and spatial distribution of ranavirus presence across multiple months and seasons using environmental DNA techniques. Results indicate that ranavirus was present in approximately 72.5% of waterbodies sampled on a fine geographical scale (<10km between sites, 7,150 km2), with higher detection rates in later summer months than earlier. I then explored the sequence variability at the major capsid protein gene (MCP) and putative virulence gene (vIF-2α) of FV3 samples from Ontario, Alberta, and the Northwest Territories, with the premise of understanding pathogen movement across the landscape. However, a lack of genetic diversity was found across regions, likely due to a lack of informative variation at the chosen genetic markers or lack of mutation. Instead, I found a novel FV3-like ranavirus and evidence for a recombinant between FV3 and a ranavirus of another lineage. This thesis provides a deeper understanding into the spatio-temporal distribution of FV3, with an idea of how widespread and threatening ranaviruses are to amphibian diversity. Keywords: ranavirus, frog virus 3, amphibians, environmental DNA, phylogenetics, wildlife disease, disease surveillance, major capsid protein, vIF-2α Author Keywords: amphibians, environmental DNA, frog virus 3, phylogenetics, ranavirus, wildlife disease
Moss Biomonitoring of Trace Element Deposition in Northwestern British Columbia, Canada
Atmospheric pollutant deposition poses a risk to ecosystem health; therefore, monitoring the spatial and temporal trends of deposition is integral to environmental sustainability. Although moss biomonitoring is a common method to monitor various pollutants in Europe, offering a cost-effective approach compared to traditional methods of monitoring, it is rarely used in Canada. The focus of this study was a spatial assessment of trace element deposition across a region with a known large-point source of emissions using the moss biomonitoring method. Moss tissues presented strong correlations with modelled deposition in the region, suggesting mosses are a valuable biomonitoring tool of trace element deposition, especially in regions dominated by large-point emission sources. Additionally, a moss species endemic to Canada was compared to commonly used moss species with results indicating this species (Isothecium stoloniferum) can be used reliably as a biomonitor. Moss biomonitoring is recommended as a compliment to fill in spatial gaps in current monitoring networks across the country. Author Keywords: biomonitoring, bryophytes, Hylocomium splendens, moss, Pleurozium schreberi, trace elements
Using environmental DNA (eDNA) metabarcoding to assess aquatic plant communities
Environmental DNA (eDNA) metabarcoding targets sequences with interspecific variation that can be amplified using universal primers allowing simultaneous detection of multiple species from environmental samples. I developed novel primers for three barcodes commonly used to identify plant species, and compared amplification success for aquatic plant DNA against pre-existing primers. Control eDNA samples of 45 plant species showed that species-level identification was highest for novel matK and preexisting ITS2 primers (42% each); remaining primers each identified between 24% and 33% of species. Novel matK, rbcL, and pre-existing ITS2 primers combined identified 88% of aquatic species. The novel matK primers identified the largest number of species from eDNA collected from the Black River, Ontario; 21 aquatic plant species were identified using all primers. This study showed that eDNA metabarcoding allows for simultaneous detection of aquatic plants including invasive species and species-at-risk, thereby providing a biodiversity assessment tool with a variety of applications. Author Keywords: aquatic plants, biodiversity, bioinformatics, environmental DNA (eDNA), high-throughput sequencing, metabarcoding
De novo transcriptome assembly, functional annotation, and SNP discovery in North American flying squirrels (genus Glaucomys)
Introgressive hybridization between northern (Glaucomys sabrinus) and southern flying squirrels (G. volans) has been observed in some areas of Canada and the USA. However, existing molecular markers lack the resolution to discriminate late-generation introgressants and describe the extent to which hybridization influences the Glaucomys gene pool. I report the first North American flying squirrel (genus Glaucomys) functionally annotated de novo transcriptome assembly with a set of 146,621 high-quality, annotated putative species-diagnostic SNP markers. RNA-sequences were obtained from two northern flying squirrels and two southern flying squirrels sampled from Ontario, Canada. I reconstructed 702,228 Glaucomys transcripts using 193,323,120 sequence read-pairs, and captured sequence homologies, protein domains, and gene function classifications. These genomic resources can be used to increase the resolution of molecular techniques used to examine the dynamics of the Glaucomys hybrid zone. Author Keywords: annotation, de novo transcriptome, flying squirrels, high-throughput sequencing, hybridization, single nucleotide polymorphisms
Cytokinin biosynthesis, signaling and translocation during the formation of tumors in the Ustilago maydis-Zea mays pathosystem
Cytokinins (CKs) are hormones that promote cell division. During the formation of tumors in the Ustilago maydis-Zea mays pathosystem, the levels of CKs are elevated. Although CK levels are increased, the origins of these CKs have not been determined and it is unclear as to whether they promote the formation of tumors. To determine this, we measured the CK levels, identified CK biosynthetic genes as well as CK signaling genes and measured the transcript levels during pathogenesis. By correlating the transcript levels to the CK levels, our results suggest that increased biosynthesis and signaling of CKs occur in both organisms. The increase in CK biosynthesis by the pathosystem could lead to an increase in CK signaling via CK translocation and promote tumor formation. Taken together, these suggest that CK biosynthesis, signaling and translocation play a significant role during the formation of tumors in the Ustilago maydis-Zea mays pathosystem. Author Keywords: Biosynthesis, Cytokinins, Signaling, Translocation, Ustilago maydis, Zea mays
New Interpretations from Old Data
Range contractions and expansions are important ecological concepts for species management decisions. These decisions relate not only to rare and endangered species but to common and invasive species as well. The development of the broad spatiotemporal extent models that are helpful in examining range fluctuations can be challenging given the lack of data expansive enough to cover the time periods and geographic extents needed to fit the models. Archival records such as museum databases and harvest data can provide the spatiotemporal extent needed but present statistical challenges given they represent presence-only location information. In this thesis, I used maximum entropy and Bayesian hierarchical occupancy algorithms fitted with archival presence-only records to develop spatiotemporal models covering broad spatial and temporal extents for snowshoe hare and Canada lynx. These two algorithm types are well suited for presence-only data records and can be adapted to include biological and physical processes, thus improving the ecological realism of the models. Using these modelling methods, I found the extent of occurrence (EOO) and area of occupancy (AOO) varied greatly over time and space for both snowshoe hare and Canada lynx, suggesting that management decisions for these species should include consideration of these variations. While the presence-only data were appropriate for model development and understanding changing values in EOO and AOO, it sometimes lacked the locational accuracy and precision needed to create fine scale ecological analyses, thus resulting in somewhat coarse but potentially relevant conclusions. Author Keywords: Area of occupancy, Bayesian hierarchical models, Canada lynx, Extent of occurrence, Presence-only data, Snowshoe hare
Effect of Carbon Source and Phytohormones on the in vitro Growth of Euglena Gracilis
Microalgae are a promising source of valuable compounds relevant to biofuels, biomaterials, nutraceuticals as well as animal and human nutriment. Unfortunately, low cell density and slow growth result in reduced economic feasibility. Heterotrophic cell culturing using an organic carbon source in lieu of light has proven to be an effective alternative to photobioreactors; however, further improvement may be possible with the addition of growth promoting phytohormones. In this thesis, growth and endogenous hormone profiles in heterotrophic cultures of Euglena gracilis were evaluated using glucose and ethanol as carbon sources. Cytokinin (CK) and abscisic acid (ABA) were quantified by HPLC-ESI-MS/MS and compared to culture growth dynamics. Exogenous phytohormones treatments were also conducted to determine if they may mitigate nutrient reduction and improve growth. Phytohormones CK and ABA were purified and analyzed at seven points along the growth curve in small scale (250 mL flasks, 100 mL working volume) cultures. Among the key findings was that ethanol cultures undergoing exponential growth, primarily synthesize freebase cytokinins (FBCKs) and methylthiol-cytokinins (MeSCKs), while not producing detectable levels of ABA. In exogenous studies, dry biomass was positively influenced with the addition of exogenous ABA; however, the most notable result revealed the ability of transZ to alleviate nutrient reduction. These findings suggest a communication network in algal culture using FBCKs and MeSCKs, as well as the potential for exogenous hormone supplementation to increase growth rates and overall biomass productivity. Author Keywords: abscisic acid, cytokinin, Euglena gracilis, heterotrophy, phytohormones
Effects of flooding on nutrient budgets and ecosystem services
Increases in flooding due to anthropogenic influences such as climate change and reservoir creation will undoubtedly impact aquatic ecosystems, affecting physical, chemical, and biological processes. We used two approaches to study these impacts: a whole-ecosystem reservoir flooding experiment and a systematic literature review. In the whole-ecosystem experiment, we analyzed the impact of flooding on nutrient release from stored organic matter in an upland forest. We found that flooded organic matter produced N (nitrogen) and P (phosphorus), but that more N was released relative to P, increasing the N:P ratio over time. In the systematic literature review, we linked small (<10 year recurrence interval) and extreme (>100 year recurrence interval) floods to changes in 10 aquatic ecosystem services. Generally, extreme floods negatively impacted aquatic ecosystem service provisioning, while small floods contributed positively. Overall, we found that flood impacts vary depending on ecosystem properties (organic matter content) and flood characteristics (magnitude). Author Keywords: ecosystem services, flooding, nutrients, reservoirs, rivers
Aquatic Invertebrate Studies from Two Perspectives
Leaf litter decomposition represents a major pathway for nutrient cycling and carbon flow in aquatic ecosystems, and macroinvertebrates play an important role in the processing of this material. To assess the causes of variable leaf breakdown and nutrient fluxes, I measured decomposition rates and the nutrient release ratios of decomposing leaf material across a broad latitudinal gradient in Ontario boreal lakes which varied in nutrients, temperature, and pH. I examined the effects of macroinvertebrates using inclusion and exclusion bags. Generally, leaves decomposed faster in nutrient-rich, warmer lakes. Macroinvertebrates increased decomposition rates but their effects were relatively small compared to regional effects of nutrients and temperature. In addition, we found differential effects of nutrients and temperature on nutrient release ratios, which were partially determined by the release and retention of N and P. These results indicate that changes in these important environmental lake variables could alter decomposition dynamics in Ontario lakes, with implications for nutrient cycling and the storage of this important external carbon source. I studied the biogeography of predaceous diving beetles (Coleoptera: Dytiscidae) in two remote and understudied regions: the Far North of Ontario, and Akimiski Island, Nunavut. I identified 35 species from northern Ontario, including three first provincial records for Ontario, Acilius athabascae Larson (1975), Hygrotus unguicularis (Crotch 1874), and Nebrioporus depressus (Fabricius 1775). I also documented three significant range extensions and six gap-infills for this region. I collected and identified 16 species from Akimiski Island, Nunavut, which include several first time reports for these species for the Nunavut territory. My collections also extend the known ranges of five species into the Hudson Plains Ecozone. This work provides important baseline information on the distribution of diving beetles for these regions. Author Keywords: biodiversity, Boreal Shield, decomposition, Dytiscidae, ecological stoichiometry, macroinvertebrates

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Master of Education
  • (-) ≠ Nocera
  • (-) = Environmental and Life Sciences

Filter Results

Date

2011 - 2021
(decades)
Specify date range: Show
Format: 2021/03/04