Graduate Theses & Dissertations

Pages

Fungal pathogen emergence
The emergence of fungal hybrid pathogens threatens sustainable crop production worldwide. To investigate hybridization, the related smut fungi, Ustilago maydis and Sporisorium reilianum, were selected because they infect a common host (Zea mays), can hybridize, and tools are available for their analysis. Hybrid dikaryons exhibited filamentous growth on plates but reduced virulence and limited colonization in Z. mays. Select virulence genes in the hybrid had similar transcript levels on plates and altered levels during infection of Z. mays relative to each parental dikaryon. Virulence genes were constitutively expressed in the hybrid to determine if its pathogenic development could be influenced. Little impact was observed in hybrids with increased expression of effectors known to modify host response and metabolism. However, increased expression of transcriptional regulators of stage specific pathogenic development increased the hybrid’s capacity to induce symptoms. These results establish a base for investigating molecular aspects of fungal hybrid pathogen emergence. Author Keywords: effectors, hybrid pathogenesis assays, Sporisorium reilianum, transcription factors, Ustilago maydis, virulence factors
Enhanced weathering and carbonation of kimberlite residues from South African diamond mines
Mafic and ultramafic mine wastes have the potential to sequester atmospheric carbon dioxide (CO2) through enhanced weathering and CO2 mineralization. In this study, kimberlite residues from South African diamond mines were investigated to understand how weathering of these wastes leads to the formation of secondary carbonate minerals, a stable sink for CO2. Residues from Venetia Diamond Mine were fine-grained with high surface areas, and contained major abundances of lizardite, diopside, and clinochlore providing a maximum CO2 sequestration capacity of 3–6% of the mines emissions. Experiments utilized flux chambers to measure CO2 drawdown within residues and unweathered kimberlite exhibited greater negative fluxes (-790 g CO2/m2/year) compared to residues previously exposed to process waters (-190 g CO2/m2/year). Long-term weathering of kimberlite residues was explored using automated wet-dry cycles (4/day) over one year. Increases in the δ13C and δ18O values of carbonate minerals and unchanged amount of inorganic carbon indicate CO2 cycling as opposed to a net increase in carbon. Kimberlite collected at Voorspoed Diamond Mine contained twice as much carbonate in yellow ground (weathered) compared to blue ground, demonstrating the ability of kimberlite to store CO2 through prolonged weathering. This research is contributing towards the utilization of kimberlite residues and waste rock for CO2 sequestration. Author Keywords: CO2 fluxes, CO2 mineralization, CO2 sequestration, Enhanced weathering, Kimberlite, Passive carbonation
effects of heat dissipation capacity on avian physiology and behaviour
In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds. Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch
History and Legacy of the “Orillia Asylum for Idiots
The “Orillia Asylum for Idiots” (1861 - 2009), Canada’s oldest and largest facility for the care and protection of children and adults with disabilities, was once praised as a beacon of humanitarian progress and described as a “community within a community.” Yet, survivors who lived in the facility during the post Second World War period, a time described as the “golden age of children’s rights,” tell harrowing stories of abuse and neglect. Despite the nation’s promise to “put children first” and protect the universal rights of “Canada’s children,” children incarcerated within the Orillia Asylum were subjected to systemic neglect and cultural discrimination, daily humiliation and dehumanization, and physical, sexual, and emotional abuse. Far from being a place for child protection and care, this dissertation finds that the Orillia Asylum was a site of a multi-faceted and all-encompassing violence, a reality that stands in complete contrast to the grand narrative through which the facility has historically been understood. This dissertation considers how such violence against children could occur for so long in a facility maintained by the state, a state invested in protecting children. It finds that children who were admitted to the Orillia Asylum were not considered to be “Canada’s children” at all by virtue of being labelled as “mentally deficient,” “feeble-minded,” “not-quite-human,” and “not-quite-children.” Author Keywords: childhood, disability, Huronia Regional Centre, institutional child abuse, institutional violence, institutionalization
Diversity, Biogeography, and Functional Traits of Native Bees from Ontario’s Far North and Akimiski Island, Nunavut
Bees (clade Anthophila), are poorly studied in northern Canada, as these regions can be difficult to access and have a short growing season. This study examined bees from two such regions: Ontario’s Far North, and Akimiski Island, Nunavut. I present this study as the largest biogeographical study of bees performed in these remote areas to enhance knowledge of northern native bees. I found 10 geographically unexpected species in Ontario and on Akimiski Island. Rarefaction and the Chao 1 Diversity Index showed that Akimiski is nearly as diverse as the Far North of Ontario, a significantly larger area. I also found, based on log femur length versus latitude, Bombus worker size was consistent with Bergmann’s rule, and there were no apparent statistical differences in the community weighted means of functional traits between the Far North’s Boreal Shield and Hudson Bay Lowlands ecozones. This work provides invaluable knowledge of the native bee species from these regions, which has implications for their future conservation. Author Keywords: Akimiski Island, Bergmann's rule, Chao 1, Community-weighted means, native bees, rarefaction
WOMEN IN HORROR
The objective of this dissertation is to measure the influence of the contemporary influx of women’s involvement in the horror genre in three dimensional capacities: female representation in horror films, female representation as active, participatory spectators and female representation in the industrial production of horror. Through the combined approach of theoretical and empirical analysis, this dissertation examines the social conditions that facilitated women’s infiltration of the horror genre. Beginning with psychoanalytic theories of spectatorship, it is demonstrated that female filmmakers have challenged horror’s traditional images of victimized women through the development new forms of feminine representation in contemporary horror films. Using data collected from a sample of 52 self-identified female horror fans, it is revealed that the purported invisibility of female horror spectators is a consequence of their alternative modes of consumption. Through interviews conducted with four female producers and an examination of their cultural productions, I illustrate that women have reconstituted the horror genre as a space for inclusivity, political activism and feminist empowerment. Cohesively, these findings reveal the contemporary feminist reclamation of horror to be a form of resistance intended to challenge the patriarchal structures that facilitated women’s historical exclusion from the horror genre. Author Keywords: Abjection, Feminism, Film, Gender, Horror, Psychoanalysis
Automated Separation and Preconcentration of Ultra-Trace Levels of Radionuclides in Complex Matrices by Online Ion Exchange Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
Radionuclides occur in the environment both naturally and artificially. Along with weapons testing and nuclear reactor operations, activities such as mining, fuel fabrication and fuel reprocessing are also major contributors to nuclear waste in the environment. In terms of nuclear safety, the concentration of radionuclides in nuclear waste must be monitored and reported before storage and/or discharge. Similarly, radionuclide waste from mining activities also contains radionuclides that need to be monitored. In addition, a knowledge of ongoing radionuclide concentrations is often required under certain ‘special’ conditions, for example in the area surrounding nuclear and mining operations, or when nuclear and other accidents occur. Thus, there is a huge demand for new methods that are suitable for continuously monitoring and rapidly analyzing radionuclide levels, especially in emergency situations. In this study, new automated analytical methods were successfully developed to measure ultra trace levels of single or multiple radionuclides in various environmental samples with the goal of faster analysis times and less analyst involvement while achieving detection limits suitable for typical environmental concentrations. Author Keywords: automation, ICP-MS, ion exchange, radionuclide
Assessing Brook Trout (Salvelinus fontinalis) Seasonal Occupancy in Haliburton County, ON Using Environmental DNA
Brook trout (Salvelinus fontinalis) are declining across Ontario in both numbers and distribution, prompting concern for their future. Here, conventional, emerging, and predictive tools were combined to document brook trout occupation across seasons using streams in Haliburton County, ON as model systems. By using the Ontario Ministry of Natural Resources and Forestry’s (OMNRFs) Aquatic Ecosystem Classification (AEC) system variables with environmental DNA (eDNA) sampling and backpack electrofishing, my research supports the development of species occupancy models (SOMs) and eDNA as tools to document brook trout occurrence. To do this, eDNA sampling was validated in Canadian Shield stream environments by comparison with single-pass backpack electrofishing before seasonally sampling two river systems across their main channel and tributaries to assess occupancy. Streams were classified as potential high, moderate, and low-quality brook trout habitats using indicator variables within the AEC and sampled seasonally with eDNA to quantify occupancy and relate it to habitat potential at the county scale. Results showed eDNA to be an effective tool for monitoring fish across Canadian Shield landscapes and that brook trout occupancy varied seasonally within and across watersheds, suggesting that habitat and fish management strategies need to consider seasonal movement and spatial connectivity. Using these tools will enable biologists to efficiently predict and document brook trout occurrences and habitat use across the landscape. Author Keywords: Aquatic Ecosystem Classification, brook trout, Canadian Shield, connectivity, environmental DNA, seasonal occupation
Comparative efficacy of eDNA and conventional methods for monitoring wetland anuran communities
Identifying population declines and mitigating biodiversity loss require reliable monitoring techniques, but complex life histories and cryptic characteristics of anuran species render conventional monitoring challenging and ineffective. Environmental DNA (eDNA) detection is a highly sensitive and minimally invasive alternative to conventional anuran monitoring. In this study, I conducted a field experiment in 30 natural wetlands to compare efficacy of eDNA detection via qPCR to three conventional methods (visual encounter, breeding call, and larval dipnet surveys) for nine anuran species. eDNA and visual encounter surveys detected the greatest species richness, with eDNA methods requiring the fewest sampling events. However, community composition results differed among methods, indicating that even top performing methods missed species detections. Overall, the most effective detection method varied by species, with some species requiring two to three methods to make all possible detections. Further, eDNA detection rates varied by sampling season for two species (A. americanus and H. versicolor), suggesting that species-specific ecology such as breeding and larval periods play an important role in eDNA presence. These findings suggest that optimized monitoring of complex anuran communities may require two or more monitoring methods selected based on the physiology and biology of all target species. Author Keywords: amphibian, anuran, conventional monitoring, eDNA, environmental DNA, species richness
Population Genetics and Gut Microbiome Composition Reveal Subdivisions and Space Use in a Generalist and Specialist Ungulate
Natural populations are often difficult and costly to study, due to the plethora of confounding processes and variables present. This is of particular importance when dealing with managed species. Ungulates, for example, act as both consumers and prey sources; they also provide economic benefit through harvest, and as such, are of high ecological and economic value. I addressed conservation and management concerns by quantifying subdivision in wild populations and combined movement with non-invasive sampling to provide novel insight on the physiological drivers of space use in multiple species. This thesis explored biological patterns in ungulates using two distinct approaches: the first used molecular genetics to quantify gene flow, while the second examined the relationship between movement and the gut microbiome using high-throughput sequencing and GPS tracking. The goal of the first chapter was to quantify gene flow and assess the population structure of mountain goats (Oreamnos americanus) in northern British Columbia (BC) to inform management. I used microsatellites to generate genotype data and used a landscape genetics framework to evaluate the possible drivers behind genetic differentiation. The same analyses were performed at both a broad and fine scale, assessing genetic differentiation between populations in all of northern BC and in a case management study area northeast of Smithers BC. The results indicated panmixia among mountain goats regardless of scale, suggesting distance and landscape resistance were minimally inhibiting gene flow. Therefore, management at local scales can continue with little need for genetically informed boundaries, but regulations should be tailored to specific regions incorporating data on local access and harvest pressure. My second chapter aimed to determine the extent to which the gut microbiome drives space-use patterns in a specialist (mountain goat) and generalist (white-tailed deer, Odocoileus virginianus) ungulate. Using fecal samples, we generated genomic data using 16S rRNA high-throughput sequencing to evaluate gut diversity and gut microbiome characteristics. Additionally, individuals were fitted with GPS collars so that we could gain insight into movement patterns. Gut microbiome metrics were stronger predictors of space use and movement patterns with respect to home range size, whereas they were weaker predictors of habitat use. Notably, factors of both the gut microbiome and age of a given species were correlated with changes in space use and habitat use. Ultimately, this research linked high-throughput sequencing and GPS data to better understand ecological processes in wild ungulates. Author Keywords: gene flow, genomics, gut microbiome, home range, population genetic structure, ungulates
Electrochemical Biosensors for Neurodegenerative Disease Biomarkers
The onset of neurodegenerative diseases such as Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) are typically characterised by the aggregation of protein biomarkers into cytotoxic fibrils. Novel means of analysing these biomarkers are needed to expand the literature toward earlier diagnosis of these conditions. Electrochemical sensors could offer the sensitivity and selectivity needed for specialised analysis, including potential point-of-care applications. The AD biomarker Tau, and ALS biomarker TDP-43 proteins are explored here by using a label-free electrochemical sensors. Tau protein was covalently bound to gold electrode surface to study the in vitro mechanisms of aggregation for this protein. An immunosensor to TDP-43 was developed by covalently binding primary TDP-43 antibodies (Abs) on gold electrode surface. A novel direct ELISA sensor for TDP-43 with visual detection and electrochemical quantification was also developed. The results validated the experimental designs toward specialised and selective analysis of these biomarkers and their aggregation mechanisms. Author Keywords: ALS, Alzheimer's, Biosensors, Electrochemistry, Tau, TDP-43
Archaeology and Reconciliation in the Williams Treaties Territory
This thesis examines the history of Indigenous inclusion in the discipline of archaeology and how archaeologists can provide reconciliation when working with Indigenous peoples in their territory. This thesis focuses on the territory of the Williams Treaties with a particular focus on the location of Nogojiwanong (Peterborough). My data consists of in-depth interviews from ten informants and studying three case studies that happened in the area. I take my informants’ suggestions and apply them to my case studies, to show practical examples of how we can provide reconciliation in the field of archaeology. Author Keywords: Decolonization , Heritage Management , Indigenous, Reconciliation

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Bell
  • (-) ≠ Theory, Culture and Politics
  • (-) ≠ Sustainability
  • (-) ≠ Chambers
  • (-) ≠ Applied Modeling and Quantitative Methods

Filter Results

Date

1974 - 2024
(decades)
Specify date range: Show
Format: 2024/03/29