Graduate Theses & Dissertations

Pages

influence of tree species litterfall on soil chemistry and implications for modelling soil recovery from acidification
Decades of acidic deposition have depleted base cation pools in soil over large parts of eastern north America, including the Muskoka-Haliburton region of central Ontario. This region has also experienced a shift in forest species composition over the past 200 years, favouring sugar maple (Acer saccharum Marsh.) at the expense of species such as white pine (Pinus strobus L.) and eastern hemlock (Tsuga canadensis (L.) Carr.). This shift in species composition may have changed soil chemistry over time due to differences in nutrient and metal inputs in litterfall. An analysis of litterfall and soil chemistry was conducted for five tree species commonly found across central Ontario. Stands were established in the Haliburton Forest & Wild Life Reserve and were dominated by one of balsam fir (Abies balsamea (L.) Mill.), eastern hemlock, white pine, sugar maple, or yellow birch (Betula alleghaniensis Britt.). Analysis of mineral soil oxides suggested that these stands were established on similar parent material. Deciduous dominated stands (maple and birch) had greater litterfall mass compared with conifer stands (fir, hemlock, and pine), generally leading to greater macronutrient inputs to the soil. Elemental cycling through the organic horizons was more rapid in deciduous stands, with base cations having the shortest residence times. This suggests that a change from greater conifer dominance to mixed hardwood forests may lead to more rapid elemental cycling and alter the distribution of elements in soil. Forests in the region are typically mixed and the resulting differences in soil chemistry may influence model predictions of soil recovery from acidification. Laboratory leaching tests indicated that both stand type and the acidity of simulated rainwater inputs influenced soil solution chemistry, with deciduous stands generally having a greater buffering capacity than sites dominated by coniferous species. Changes in soil chemistry were examined for each stand type using the Very Simple Dynamic (VSD) biogeochemical model. Simulations showed that soil base saturation began to increase following lows reached around the year 2000, and similar patterns were observed for all stands. When sulphur (S) and nitrogen (N) deposition were held constant at present rates, soil base saturation recovery (toward pre-1900 levels) was marginal by 2100. With additional deposition reductions, further increases in base saturation were minor at all sites. In conjunction with additional deposition reductions, the elimination of future forest harvesting allowed for the greatest potential for recovery in all stands. Overall, these results suggest that changes in forest cover may influence soil chemistry over time, most notably in the organic soil horizons. However, forecasted recovery from acidification is expected to follow similar patterns among stands, since differences in soil chemistry were less significant in the mineral soil horizons which compose a greater proportion of the soil profile. Author Keywords: base cation decline, forest harvesting, litterfall, mineral weathering, soil acidification, VSD model
Short photoperiod lowers visceral adiposity and shifts the molecular clock in Peromyscus leucopus
The length of photoperiod can alter circadian rhythms and change fat depot mass whencombined with environmental temperatures below thermoneutral. To isolate photoperiod effects, we compared the effects of long and short photoperiod exposure at thermoneutrality in photoperiod sensitive, F1 generation adult male white-footed mice (P. leucopus). Mice were housed in long-day or short-day photoperiod conditions at thermoneutrality for 4 weeks. Short photoperiod decreased vWAT mass without changing body weight, scWAT or iBAT mass, or calorie consumption. Short photoperiod increased Adrβ3 and Lpl mRNA expression in vWAT with no change in Ucp1, Pgc1a or Hsl. vWAT Per1, Per2 and Nr1d1 mRNA expression were aligned to the onset of dark and food intake, while Bmal1 and Clock were misaligned. These findings suggest that short photoperiod per se can decrease visceral fat accumulation, without activating thermogenesis, reinforcing that environmental photoperiod should be considered when researching cause and prevention of obesity. Author Keywords: adiposity, circadian rhythm, clock genes, obesity, Peromyscus, photoperiod
Differential expression of cytochrome b5s in Giardia intestinalis during nitrosative stress and encystation
The waterborne protozoan Giardia intestinalis cycles between the environmentally-resistant and infectious cyst and the metabolically-active trophozoite that adheres to the epithelial lining of the small intestine. Adhesion can trigger the innate immune response in epithelial cells, including the synthesis of the free radical nitric oxide (NO) that inhibits cell proliferation and encystation of trophozoites. In this work changes in protein expression of three Giardia isotypes of the redox heme protein cytochrome b5 (gCYTb5 I, II and III) were studied in response to either nitrosative stress or induction of encystation. Two nitrosative stressors, sodium nitrite and the NO donor DETA-NONOate, were used at sub-lethal concentrations (0.5 mM and 0.05 mM, respectively) that do not affect cell proliferation until later time points so that subtle changes in protein expression could be observed in the absence of other confounding factors. Nucleolar gCYTb5-I and nucleoplasmic gCYTb5-III expression patterns were similar in trophozoites exposed to either stressor, showing gradual increases in expression with peaks between 4 and 12 hours, which indicates these cytochromes respond to nitrosative stress and possibly to potential DNA damage in Giardia. In contrast, gCYTb5-II of the peripheral vacuoles, which are part of the endocytic pathway of Giardia, showed little change in expression in response to either stressor. However, changes in gCYTb5-II expression were observed in encysting trophozoites, with a 1.4-fold increase in protein levels at seven hours after induction of encystation, followed by a gradual decrease in expression. These changes are consistent with previous mRNA analysis done in our laboratory and suggest a role for gCYTb5-II in the increase in nutrient uptake during early encystation. Author Keywords: cytochrome, encystation, Giardia, heme, nitrosative, parasite
Assessment of Potential Threats to Eastern Flowering Dogwood (Cornus florida) in Southern Ontario
In Canada, eastern flowering dogwood (Cornus florida L.) is an endangered tree that occurs only in the Carolinian forest of southern Ontario. Threats to this species include habitat fragmentation and the fungal pathogen dogwood anthracnose (Discula destructiva). I conducted a population genetic analysis using seven nuclear microsatellite markers to determine if fragmented populations are genetically isolated from one another and have low levels of genetic diversity. Genetic comparisons suggest on-going dispersal among sites and relatively high genetic diversity within most sites; however, smaller populations and younger trees were less genetically diverse. I also used linear mixed effects models to assess potential relationships between several ecological variables and the prevalence of dogwood anthracnose. Disease severity was higher in trees on shallow slopes and in larger trees; the latter also had higher likelihood of infection. Insights from this study will be important to incorporate into future management strategies. Author Keywords: Cornus florida, Discula destructiva, dogwood anthracnose, Eastern flowering dogwood, endangered, population genetics
Ecosystem Response to Above Canopy Nitrogen Addition in a Jack Pine (Pinus banksiana) Forest in the Athabasca Bituminous Sands Region of Northeastern Alberta, Canada
In this study we seek to better understand the potential effects of short-term (5-year) N fertilization on jack pine forest biogeochemistry, vascular plant community composition and to project a temporal endpoint of nitrogen leaching below the major rooting zone. Aqueous ammonium nitrate (NH4NO3) was applied above the forest canopy across five treatment plots (20 x 80 m) four times annually. The experimental deposition gradient followed those known for localized areas around the major open pit operations at 0, 5, 10, 15, 20 and 25 kg N ha-1 yr-1 over a five-year period (2011 – 2015). Nitrate recovery in throughfall was significantly higher than NH4+ (p < 0.05), indicating canopy NH4+ immobilization. There was a strong treatment effect (p < 0.05) of N on the epiphytic lichen thalli concentrations of Hypogymnia physodes and Evernia mesomorpha after five years. The canopy appeared to approach saturation at the highest deposition load (25 kg N ha-1 yr-1) during the fifth year of N additions as most N added above the canopy was accounted for in throughfall and stemflow. The non-vascular (lichen and moss) vegetation pool above the forest floor was the largest receptor of N as cryptogam foliar and thalli N concentrations showed a significant treatment effect (p < 0.05). Nitrogen in decomposing litter (25 kg N ha-1 yr-1) remained immobilized after five years, while treatments ≤ 20 kg N ha-1 yr-1 started to mobilize. Understory vascular plant cover expansion was muted when deposition was ≥ 10 kg N ha-1 yr-1. Finally, modeling suggests the forest may not leach N below the rooting zone until around 50 years after chronic addition begin (25 kg N ha-1 yr-1). The modeling results are consistent with empirical data from a high exposure (~20 - 25 kg N ha-1 yr-1) jack pine site approximately 12 km west of the experimental site that has not yet experienced N leaching. Author Keywords: Biogeochemistry, Canopy, Deposition, Jack Pine, Nitrogen, Understory
Phosphorus delivery in the Rainy-River Lake of the Woods Watershed
Lake of the Woods (LOW) is a large international waterbody which suffers from frequent and widespread algae blooms. Previous studies have highlighted the importance of the lake's largest tributary, the Rainy River (RR) and its significance in total phosphorus (TP) delivery to the LOW. Unfortunately, little is known about TP contributions from the RR and its tributaries within the Canadian portion of the watershed. This thesis examines patterns and sources of TP from four tributaries on the Canadian side of the lower RR region, two of which are predominantly natural, and two that are predominantly agricultural. Relationships between water quality parameters, land use and geologic characteristics were observed over a complete hydrologic year (Oct 1, 2018 - Sept 31, 2019), and through an intensive sampling campaign using a nested watershed approach during the spring high flow and summer low flow periods. Results revealed that TP and total suspended sediment (TSS) concentrations (>100 µg/L and >20 mg/L respectively), and loads (>20 kg/km2 and >3500 kg/km2, respectively), were greater at agricultural sites compared with natural sites (<65 µg/L TP and <15 mg/L TSS concentration, and <20 kg/km2 TP and <4000 kg/km2 TSS export). Total P, TSS, Fe, and Al were significantly positively correlated (R2= 0.26-0.59; p<0.05) and intensive sampling revealed that these relationships were strongest during the spring and at the agricultural sites (R2= 0.73-0.98; p<0.05). In contrast, the summer intensive sampling revealed that TP and redox sensitive Fe were significantly correlated (R2= 0.72; p<0.005), whereas redox insensitive Al and TSS were not, suggesting TP may be sourced via redox processes in the summer due to favourable hydrologic conditions. This was observed not only at sites with high wetland influence, but also at sites with more agricultural presence suggesting that redox sourced TP may also originate from mineral stream bed sediment during low flow periods. This research suggested two primary TP sources in the lower RR region: erosion in the spring, and redox processes (internal release) in the summer. It is recommended that intensive monitoring continue in Canada, and further research be conducted to fully understand the significance of internal P release in the tributaries. Author Keywords: erosion, land use, nutrients, particulates, redox, water quality
Using ultra high-resolution mass spectrometry to characterize the biosorbent Euglena gracilis and its application to dysprosium biosorption
Euglena gracilis is an enigmatic and adaptable organism that has great bioremediationpotential and is best known for its metabolic flexibility. The research done in this dissertation addresses (1) how growth conditions impact cellular composition, and (2) how chemometric approaches (such as statistical design of experiments and artificial neural networks) are viable alternatives to the conventional biosorption models for process optimization. Using high-resolution mass spectrometry for biosorbent characterization is a powerful way to assess the chemical characteristics of lyophilized and fractionated cells with high precision, especially to screen for compound classes that may have potentiality for rare earth element removal. Growth conditions impacted cellular composition and separated size fractions of cells yielded different molecular/chemical properties as described by compositional abundances, thus different biosorptive potential. Untargeted analysis demonstrated that exponential dark-grown cells with glucose supplementation were abundant in polyphenolic- and carbohydrate-like compounds, molecular species highly involved in rare earth element binding. Light grown cells had more heterogeneity and the highest molecular weighted fractions from light grown cells (fraction D) had the most abundances of polyphenolic- and protein-like structures. Chemometric modeling used identified the best and worst conditions for iii dysprosium sorption and showed that pH had the most significant influence on bioremoval. Bioremoval ranged from 37% at pH 8 to 91% at pH 3 at Dy concentration ranging from 1 to 100 μg L-1. The work presented in the PhD dissertation will aid in understanding the chemical characteristics of biosorbents by using a Van krevelen analysis of elemental ratios whether algal cells are grown in different environmental growth conditions, or when algal cell are size fractionated. This is especially applied for the screening for metal binding potentiality to Dysprosium. Chemometric methods provide an alternative method for the investigating factors for bioremoval, and applications for process optimization and for real-world applications. This dissertation will aid in understanding chemical characteristics when a biosorbent is grown in a given condition and which factors are important for rare earth element (REE) bioremoval. The significance of this work aims to look for alternate ways to screen biosorbents and using a more efficient experimental design for REE bioremoval. Author Keywords: bioremoval, biosorption, chemometrics, dysprosium, euglena, mass spectrometry
Legacy Effects Associated with the World’s Largest Ongoing Liming and Forest Regeneration Program in Sudbury, Ontario, Canada
Soil and tree chemistry were measured across 15 limed sites that were established 14 to 37 years ago within the Sudbury barrens in Ontario, along with two unlimed pre-treatment condition reference sites and an unlimed remnant pine forest. Soil pH and base cation (calcium (Ca), magnesium (Mg), and potassium (K)) concentrations were elevated in surface organic [FH] horizons up to 37-years post limestone treatment. Limestone in the organic horizon was evident by higher Ca/Sr ratios (a good marker of dolomite) in younger sites. Base cation mass budgets were generally unable to account for the mass of added Ca and Mg. Sudbury is characterized by widespread metal contamination. Metal (copper (Cu), nickel (Ni), and lead (Pb)) concentrations were generally greatest within the FH horizon and unrelated to stand age. Copper and Ni concentrations in soil generally decreased with distance from the nearest smelter. Metal partitioning (Kd) in soil was most influenced by soil pH rather than organic matter suggesting that as liming effects fade over time metal availability may increase. Author Keywords: Afforestation, Degraded, Limestone, nutrient, Space-for-time, Sudbury
Effects of hydrologic seasonality on dissolved organic matter composition, export, and biodegradability in two contrasting streams
Environmental and seasonal processes are important watershed drivers controlling the amount, composition, and fate of dissolved organic matter (DOM) in aquatic ecosystems. We used ten months of water samples and eight months of bioassay incubations from two contrasting catchments (agriculture and natural, forested) to assess the effects of seasonal variability on the composition, export, and biodegradability of DOM. As expected, the DOM composition and exports were more allochthonous-like and autochthonous-like in the forest and agriculture streams, respectively. However, we found no relationship between DOM composition and biodegradability in our study, suggesting that broad environmental factors play a large part in determining bioavailability of DOM. We found that both differences between the catchments and seasonal variability in hydrology and water temperature cause shifts in DOM composition that can affect exports and potentially affect its susceptibility to microbial activity. More research is needed to fully understand the impact of land use and temporal variability on bioavailability and delivery to downstream ecosystems. Author Keywords: Bioavailable dissolved organic carbon, Biodegradability, Dissolved organic matter, Export, Seasonality, Streams
Monitoring and fate of selected tire-derived organic contaminants
Road runoff is a vector for the transport of potentially toxic chemicals into receiving waters. In this study, selected tire-derived chemicals were monitored in surface waters of rivers adjacent to two high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples were collected from the Don River and Highland Creek in the GTA during 5 hydrological events that occurred in the period between early October 2019 and late March 2020, as well as an event in August 2020. Grab samples were collected from these rivers during a period of low flow in August 2020, as well as during a storm event in July of 2020. Analysis was performed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection (UHPLC-HRMS). Hexamethoxymethylmelamine (HMMM), a cross-linker of tire material, was detected at elevated concentrations (> 1 µg/L) during rain events in the fall and winter of 2019-20 and during a period of rapid snow melt in early March of 2020. These samples were also analyzed for the tire additive, 6PPD, and its oxidation by-product, 6PPD-quinone, as well as 1,3-diphenylguanidine (DPG). In many samples collected from the Don River and Highland Creek during storm events, the estimated concentrations of 6PPD-quinone exceeded the reported LC50 of 0.8 µg/L for Coho salmon exposed to this compound. Temporal samples collected at 3-hour intervals throughout rain event the October 2020 showed that there was a delay of several hours after the start of the event before these compounds reached their peak concentrations. In addition, 26 candidate transformation products and precursor compounds of HMMM were monitored; 15 of these compounds were detected in surface waters in the GTA. The maximum total concentration of this class of methoxymethylmelamine compounds in surface water samples was estimated to be 18 µg/L. There is limited knowledge about the properties of HMMM, its precursor contaminants, and its transformation compounds, as well as their fate in the environment. COSMO-RS solvation theory was used to estimate the physico-chemical properties of HMMM and its derivatives. Using the estimated values for these properties (e.g., solubility, vapour pressure, log Kow) as inputs to the Equilibrium Criterion (EQC) fugacity-based multimedia model, the compounds were predicted to readily partition into aqueous media, with mobility in water increasing with the extent of loss of methoxymethyl groups from HMMM. Overall, this study contributes to the growing literature indicating that potentially toxic tire-wear compounds are transported via road runoff into urban surface waters. In addition, this study provides insight into the environmental behaviour of HMMM and its transformation products. Author Keywords: 6PPD-quinone, COSMOtherm, Fugacity, Hexamethoxymethylmelamine, Road runoff, Tire wear
Assessing the Potential of Permaculture as an Adaptation Strategy Towards Climate Change in Central Ontario
This thesis uses three approaches to assess the potential of permaculture in Central Ontario. This was done using a vegetable field trial and modelling programs to determine the effectiveness of permaculture to decrease negative impacts of climate change based on projected climate values derived from regional circulation models. The first approach showed no statistical difference (P<0.05) of applying varied volumes and combinations of organic amendments on crop yields. The second approach indicated permaculture may be a sustainable production system with respect to soil erosion when compared to traditional agricultural practices. The third approach was inconclusive due to the lack of quantitative literature on permaculture management impacts on biomass yields, soil carbon or nutrient retention, which were missing from basic and scientific literature searches. The models used within this thesis include USLE, RUSLE2, AgriSuite, RothC and Holos. Author Keywords: Agriculture, Climate Change, Computer Modelling, Permaculture, Soil Erosion and Assessment
Composition and Transformation of Dissolved Organic Matter in Hudson Bay, Canada
The Hudson Bay region is a sensitive environment, where anthropogenic (e.g., dams, diversions, and/or reservoirs) impacts have increased in recent decades, potentially influencing the functioning of the ecosystem. Dissolved organic matter (DOM) entering Hudson Bay comes from both terrestrial (allochthonous) and aquatic (autochthonous) sources. The chemical composition of DOM is important, as it controls carbon biogeochemistry, nutrient cycling, and heat exchange. In rivers, estuaries, and oceans, photochemical processes and microbial degradation play a significant role in the chemical composition of DOM. Yet, our knowledge is scarce into how photochemical and microbial processes effect DOM composition specifically in Arctic aquatic systems making it difficult to predict how the carbon cycle will respond to a changing environment. This Ph.D. thesis addresses: (1) the composition of photochemically altered autochthonous and allochthonous DOM; (2) the photochemical transformations of DOM in surface waters of Hudson Bay; and (3) the microbial transformations of DOM in Hudson Bay surface waters. Using multiple analytical techniques, this work demonstrated that photochemical and microbial effects were different for light absorbing DOM compounds and ionisable DOM analyzed by Fourier transform-ion cyclotron-resonance-mass spectrometry (FT-ICR-MS). Based on FT-ICR-MS analysis, microbial processes had a greater impact on the molecular composition of allochthonous DOM originating from riverine sources and estuary whereas photochemical processes were the dominant mechanism for degradation of autochthonous DOM in Hudson Bay. Photochemical processes significantly decreased colored dissolved organic matter (CDOM) and fluorescence dissolved organic matter (FDOM) loss whereas microbial degradation was minimal in Hudson Bay river, estuary, and coastal waters. The results of this thesis highlight the importance of photochemical and microbial alteration of DOM in Arctic regions, two processes that are expected to be enhanced under climate change conditions. Author Keywords: Carbon cycle, Field flow fractionation, Microbial transformation, Optical properties, Photochemical degradation

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Master of Education
  • (-) ≠ Nocera
  • (-) = Environmental and Life Sciences
  • (-) ≠ Physiology

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/28