Graduate Theses & Dissertations

Pages

Balance is key
While preferences for symmetry are seemingly universal, they can be seen at their most extreme among individuals high in trait incompleteness. As yet, it is unclear why incompleteness yields heightened symmetry preferences. Summerfeldt et al. (2015) speculated that individuals high in incompleteness may develop heightened preferences for symmetry due to its greater perceptual fluency. Accordingly, the aim of the present set of three experiments was to examine this relationship. Implicit preferences for symmetry were measured using a modified version of the Implicit Association Test (IAT) reported by Makin et al. (2012). Experiments 1 (N = 24) and 2 (N = 24) examined whether the general implicit preferences for symmetry and influence of perceptual fluency reported by Makin et al. (2012) extended to a within-subjects design. Experiment 3 (N = 86) examined whether trait incompleteness is related to greater implicit preferences for symmetric stimuli, and whether perceptual fluency affects this association. Results showed that incompleteness and implicit preferences were related, and that incompleteness-related differences in preferences were eliminated when the patterns were equally perceptually fluent, supporting the idea that incompleteness-related preferences for symmetry are linked to perceptual fluency. Implications of these findings are discussed. Author Keywords:
Bank Swallow (Riparia riparia) Breeding in Aggregate Pits and Natural Habitats
I examined Bank Swallow (Riparia riparia) colony persistence and occupancy, in lakeshore, river and man-made aggregate pit habitat. Habitat persistence was highest on the lakeshore and lowest in aggregate pits, likely due to annual removal and relocation of aggregate resources. Bank Swallow colonies in aggregate pit sites were more likely to persist if a colony was larger or if burrows were located higher on the nesting face. I also compared nest productivity and health factors of Bank Swallows in lakeshore and aggregate pit habitats. While clutch size was the same in both habitat types, the number of fledglings from successfully hatched nests was significantly higher in aggregate pit sites than from lakeshore sites. Mass of fledgling Bank Swallows did not differ significantly between habitat types, however mass of adults from aggregate pits decreased significantly over the nesting season. Parasite loads on fledgling Bank Swallows were significantly lower in aggregate pits than in lakeshore sites. According to these indicators, aggregate pits appear to provide equivalent or higher quality habitat for Bank Swallows than the natural lakeshore sites, making them adequate and potentially key for this species’ recovery. Aggregate pit operators can manage for swallows by (1) creating longer, taller faces to attract birds and decrease predation, and (2) supplementing their habitat with water sources to encourage food availability. Author Keywords: Aerial insectivore, aggregate pits, Bank Swallow, colony persistence, ectoparasites, substitute habitat
Bio-based Polymers from Epoxidized Vegetable Oils Modified by Metathesis
The epoxides of oligomeric self-metathesized soybean oil (MSBO) and cross-metathesized palm oil (PMTAG) and canola oil (CMTAG) containing terminal double bonds were used to produce nonisocyanate polyurethanes (NIPUs) as well as anhydride, amine and thiol-cured epoxies. The synthesized NIPUs displayed metal adhesive properties for CMTAG and MSBO with MSBO being favoured probably due to its plasticizing nature as opposed to CMTAG. The relationship was reversed for the anhydride curing reaction where it was found that CMTAG, due to its lower degree of plasticizing content from the reduced dangling chains, produced higher tensile strengths than MSBO. Both MSBO and CMTAG led to fully cured amine and thiol products that were sticky gels, which prevented physical analyzses of their expected solidified products. PMTAG, due to its low number of reactive groups, was not suitable for the synthesis of these polymers. Author Keywords: Amine-cured epoxy, Anhydride-cured epoxy, Metathesis, Nonisocyanate Polyurethanes, Thiol-cured epoxy
Biodiversity patterns along a forest time series in a remediated industrial landscape
Sudbury, Ontario is an epicenter of research on industrially degraded landscapes. Regreening efforts over the past 40 years have changed the landscape, leading to an increase in forest cover in the “barrens”, that once covered more than 100,000 ha. This study characterized changes in plant and insect composition using a space for time approach in the pine plantations. A total of 25 treated sites were sampled and soil characteristics, understory plants and insect communities were assessed. All sites were contaminated with copper and nickel, but the metals had little influence on biodiversity. Vegetation diversity metrics were more strongly correlated with the pH of the organic soil horizons, while the insect community shows little response to site characteristics, and rather vegetation cover. Plant composition changes are similar to those in pine stands undergoing natural recovery and as liming effects fade there may be a decline in insect community richness. Author Keywords: Biodiversity, Heavy Metals, Mining, Remediation
Biology and Management of Stratiotes Aloides in the Trent River, Ontario
Invasive aquatic plants can create negative ecological, economic and social impacts when they displace local vegetation, interfere with shipping and navigation and inhibit water-based recreational activities. In 2008, the first North American occurrence of the invasive plant Stratiotes aloides (Water soldier) was identified in the Trent River, Ontario. This research measured offset photosynthesis and turion germination to determine the light compensation point (5.2-5.4m) and maximum depth of colonization (4-6m) for S. aloides propagules using in situ incubations and controlled growth experiments. The effects of spring and fall chemical (Diquat) and physical (hand raking) treatments on S. aloides biomass, local macrophyte recovery and community dynamics in the Trent River were also measured. The target of a 75% minimum reduction in S. aloides biomass was not attained using any of the treatment methods and no perceivable recovery of the local plant community was observed. Significant S. aloides regrowth was recorded for both treatment methods regardless of application timing. Author Keywords: herbicide, invasive species, macrophyte, photosynthesis, propagule
Bioremoval of copper and nickel on living and non-living Eugelna gracilis
This study assesses the ability of a unicellular protist, Euglena gracilis, to remove Cu and Ni from solution in mono- and bi-metallic systems. Living Euglena cells and non-living Euglena biomass were examined for their capacity to sorb metal ions. Adsorption isotherms were used in batch systems to describe the kinetic and equilibrium characteristics of metal removal. In living systems results indicate that the sorption reaction occurs quickly (<30 min) in both Cu (II) and Ni (II) mono-metallic systems and adsorption follows a pseudo-second order kinetics model for both metals. Sorption capacity and intensity was greater for Cu than Ni (p < 0.05) and were described by the Freundlich model. In bi-metallic systems sorption of both metals appears equivalent. In non-living systems sorption occurred quickly (10-30 min) and both Cu and Ni equilibrium uptake increased with a concurrent increase of initial metal concentrations. The pseudo-first-order model was applied to the kinetic data and the Langmuir and Freundlich models effectively described single-metal systems. The biosorption capacity of Cu (II) and) was 3x times greater than that of Ni (II). Sorption of one metal in the presence of relatively high concentrations of the other metal was supressed. Generally, it was found that living Euglena remove Cu and Ni more efficiently than non-living Euglena biomass in both mono- and bi-metallic systems. It is anticipated that this work should contribute to the identification of baseline uptake parameters and capacities for Cu and Ni by Euglena as well as to the increasing amount of research investigating sustainable bioremediation. Author Keywords: accumulation, biosorption, Cu, Euglena gracilis, kinetics, Ni
Biosynthesis and impact of cytokinins on growth of the oyster mushroom, Pleurotus ostreatus
The oyster mushroom, Pleurotus ostreatus, is one of the most widely cultivated edible basidiomycetes. It has gained increased attention for its economic, environmental, and medicinal properties. While a lot is known about cytokinins (CKs) and their actions at the molecular and cellular levels in plants, much less is known about the function of CKs in other kingdoms. Cytokinins, which have been detected in several fungal species, play a role in pathogenic attack against plants or during plant growth promotion by plant beneficial microbes; however, the role of CKs in fungal physiology, separate from plant associations remains largely unknown. This thesis focuses on the occurrence of fungal-derived CKs in P. ostreatus when grown in vitro as submerged or aerial mycelium. Cytokinin profiling by UHPLC-HRMS/MS revealed that P. ostreatus produces CKs and that the tRNA degradation pathway is the main source of these molecules. CK dynamics within fungal growth supported previous evidence, which suggested that tRNA degradation products have a role in the physiological development of fungi for which CKs act as fungal growth regulators. A second component of the thesis demonstrated that P. ostreatus responds to exogenous applications of aromatic and isoprenoid CKs and their effects were dependent on the dose and CK type. N6-Benzyladenine (BAP), Kinetin (KIN), N6-isopentenyladenine (iP), and trans-zeatin (tZ) bioassays revealed hormone-type responses (hormesis: biphasic response). At low doses, mycelium growth could be stimulated, whereas, at high doses only inhibitory effects were observed. This stimulation/inhibition was observed whether the measured response was an increase/decrease of aerial mycelium colony diameter, biomass accumulation or a change in mycelium morphology as compared to the controls. Results indicated there is potential to alter mycelium growth and development of P. ostreatus; thus, CKs may play the role of a “mycohormone” and may be specifically helpful for medicinal fungi by increasing growth and efficiency to produce many biologically active substances with valuable medical and environmental applications. Author Keywords: cytokinins, fungal-derived CKs, hormesis, mycelium, mycohormone, Pleurotus ostreatus
Breeding Phenology and Migration Habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands, Canada
Understanding breeding and migration habits of Whimbrel (Numenius phaeopus) in the Hudson Bay Lowlands is important for the conservation of this population. I monitored Whimbrel at two breeding sites: the Churchill region of Manitoba and Burntpoint, Ontario. Annual average nest initiation timing was highly variable and successful nests were initiated significantly earlier than those that failed. Although nests were initiated significantly earlier at Burntpoint than Churchill, annual nest success quantified in program R MARK was similar across sites. Observed nest success rates were lower than historical records and most failure was due to predation. Annual nest survival varied widely and I used a generalized linear model to relate annual nest survival to annual average weather conditions. I observed weak relationships between annual nest survival and weather conditions in the northbound staging grounds. I tracked post-breeding migratory movements using the MOTUS radio telemetry system and observed consistent use of the mid-Atlantic coast of the United States during migration, especially among birds emerging from Churchill. In Burntpoint, I observed more variability in post-breeding migratory trajectories and significantly earlier post-breeding departure as compared to Churchill. The results of my study suggest differences in breeding and migration habits exist across nearby breeding populations, indicating that there is a need for population-specific conservation approaches for this declining species. Author Keywords: Migration, Movement Ecology, Nesting Ecology, Nest Success, Shorebird conservation, Whimbrel
CO2 dynamics of tundra ponds in the low-Arctic Northwest Territories, Canada
Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d-1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the Arctic's atmospheric CO2 concentrations now and in the future. Author Keywords: Arctic, Arctic Ponds, Carbon dioxide, Carbon Fluxes, Climate Change, NDIR sensor
Calcium Stress in Daphnia Pulicaria and Exposure to Predator-Derived Cues
In recent decades, declining calcium concentrations have been reported throughout lakes across the southern edge of the Canadian Shield. This raises concern as Daphnia populations have shown to be decreasing as they require calcium not only for survival but to mitigate predation risks. Therefore, the purpose of my thesis was to study the adaptability of Daphnia under calcium limitation and predation risk from Chaoborus. Firstly, I examined the effects of calcium limitation and Chaobours kairomones on daphniid life-history and population growth. I found that low calcium concentrations and Chaoborus kairomones affected Daphnia calcium content, life-history traits, and survival. Next, I focused on how calcium concentrations and Chaoborus abundance affected the calcium content and abundance of daphniids. During this study, I also examined the relationship between the abundance of Daphnia and a competitor Holopedium. I found that calcium concentrations and the abundance of Chaoborus affects daphniid abundance. Overall, results from this study show the importance of considering both predation risk and calcium declines to better determine daphniid losses. Author Keywords: anti-predator responses, Chaoborus, competition , Life-History traits, predator cues, Zooplankton
Calcium in the Muskoka River Watershed- Patterns, trends, the potential impact of forest harvesting and steps toward an ecosystem approach to mitigation
Decreasing lake calcium (Ca) concentration, in lakes located in base poor catchments of the Muskoka River Watershed (MRW) in south-central Ontario, is a well- established acid-rain driven legacy effect threatening the health and integrity of aquatic ecosystems that can be compounded by additional Ca removals through forest harvesting. The objectives of this thesis were to assess patterns and temporal trends in key water chemistry parameters for a set of lakes in forested catchments in the MRW in south- central Ontario, to predict the pre-industrial steady state lake Ca concentration and the potential impact of harvesting on lake Ca levels in lakes located in managed MRW Crown forests, and to assess potential effects of various mitigation strategies in Ca depleted managed forests. Mean lake Ca (mg L-1) in 104 lakes across the MRW have decreased by 30% since the 1980's with the rate of decrease slowing over time. Mean Lake SO4 (mg L-1), and Mg (mg L-1) concentration also decreased significantly with time (37% and 29%, respectively) again with a declining rate of decrease, while mean lake pH and DOC increased significantly between the 1980's and the 1990's (16% and 12%, respectively) but exhibited no significant pattern after that. Principal components and GIS spatial analyses of 75 lakes with data from 2011 or 2012 water seasons suggested that smaller lakes, at higher elevation in smaller catchments with higher runoff and minimally impacted by the influence of roads and agriculture are associated with lower Ca concentrations and thus are the lakes at risk of amplified Ca depletion from forest harvesting. Spatial analyses of harvested catchments indicated that, under the proposed 10 year land forest management cut volumes, 38% of 364 lakes in the MRW will fall below the critical 1 mg L-1 Ca threshold compared with 8% in the absence of future harvesting. With respect to potential mitigation measures, soil pH and foliar Ca were indicated by meta-analysis to be more responsive to lime addition studies while soil base saturation and tree growth appeared more responsive to wood-ash addition. Future research should address the spatial extent of lakes at risk and identify when critical levels will be reached under harvesting regimes. Further investigation into the use of Ca-addition as a tool for managing the cumulative effects of past, present and future stressors is recommended. Author Keywords: calcium, harvesting, lakes, lime, Muskoka River Watershed, wood-ash
Calming Chaos in the Classroom
Physical activity and classroom design changes are beneficial means to reduce stress, and enhance well-being. Results across some studies however, are mixed. Shanker Self-Reg™ supports the use of physical equipment and design as a means of managing arousal and tension levels. Previous research lacks rich description of educators’ understanding of equipment and design, Self-Reg, and how this understanding affects the way it is implemented. In the current study, educators’ understanding of Self-Reg, how this understanding influenced educators’ approach to the school environment, and if one workshop was enough to inspire individuals to adopt a Self-Reg approach were explored using thematic analysis. Participants included educators from schools with beginner and intermediate-level experience in Self-Reg. The analysis produced eight themes and 8 sub-themes. Participants’ knowledge of Self-Reg influenced their approach to their environments. Although one workshop may have inspired interest in the framework, it was not enough to shift educators’ current practice. Author Keywords: Arousal, Classroom, Self-Reg, Self-regulation, Stress, Teachers

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Burness
  • (-) = Master of Science
  • (-) ≠ Freeland

Filter Results

Date

1973 - 2033
(decades)
Specify date range: Show
Format: 2023/02/09