Graduate Theses & Dissertations


Risk of Mortality for the Semipalmated Plover (Charadrius semipalmatus) Throughout Its Life Cycle
Three long-term mark and recapture/resight data sets of individually marked Semipalmated Plovers (Charadrius semipalmatus) were analyzed using Cormack-Jolly- Seber models. Data came from two breeding populations (Churchill, Manitoba, Canada, n=982, and Egg Island, Alaska, USA, n=84) and one overwintering population (Cumberland Island, Georgia, USA, n=62). For Alaska and Georgia, time-invariant models were best-supported, giving annual survival estimates of 0.67 (95%C.I.: 0.58- 0.76) and 0.59 (95%C.I.: 0.49-0.67) respectively. Data from Manitoba supported a timedependent model: survival estimates varied from 1.00 to 0.36, with lowest estimates from recent years, supporting observations of local population decline. Seasonal survival analysis of the Georgia population indicated lower mortality during winter (monthly Φoverwinter: 0.959, 95%CI: 0.871-0.988; for 6 month period Φoverwinter: 0.780 (0.440-0.929)) than during combined breeding and migratory periods (monthly ΦBreeding+Migration: 0.879 (0.825-0.918); for 8 month ΦBreeding+Migration: 0356 (0.215-0.504)). I recommend, based on high resight rates, continued monitoring of survival of wintering populations, to determine potential range-wide population declines. Keywords: survival, longevity, mortality, shorebird, overwinter, breeding, migration, life cycle Author Keywords: life cycle, longevity, mortality, non-breeding, shorebird, survival
Near-road assessment of traffic related air pollutants along a major highway in Southern Ontario
The spatial and temporal variation in atmospheric nitrogen dioxide (NO2), ammonia (NH3), and 17 elements (V, Cr, Fe, Ni, Cu, Zn, As, Cd, Pb, Mg, Al, Ca, Co, Se, Sb, Mn, and Na) were measured at 40 road side locations along a ~250 km traffic density gradient of 40,000–400,000 vehicles on the King’s Highway 401, in Ontario, Canada. Elemental concentrations were measured over a year, using moss bags as passive samplers, for four quarterly three-month exposure periods (October 2015 – October 2016). Gaseous NO2 and NH3 concentrations were measured using Willem’s badge passive diffusive samplers for twelve one-week exposure periods (one per month: October 2015–October 2016). Dry deposition of nitrogen was estimated using the inferential method. There were significant linear relationships between NO2 and NH3 and average annual daily traffic (AADT) volumes across the study area; higher concentrations corresponded to higher volume traffic sites. Average NO2 concentrations at sites ranged from 23.5 to 73 μg/m3, with an annual average of 43.7 μg/m3. Ammonia ranged from 2.56 to 13.55 μg/m3, with an annual average of 6.44 μg/m3. There were significant quarterly variations in NO2, with concentrations peaking during the winter months. In contrast, NH3 showed no significant quarterly variation, but a slight peak occurred during the summer. Gaseous NO2 and NH3 were highly positively correlated (r = 0.63), suggesting a common emission source from traffic. Concentrations in exposed moss were determined by subtracting the total concentration of each metal in the exposed sample from the background concentration present in the moss. Relative accumulation factors (RAF) and contamination factors were also calculated to determine the anthropogenic influence on tissue concentrations in exposed moss. All metals showed elevated levels versus background concentrations, with all metals except Ni and Co showing considerable enrichment. The highest levels of contamination were from V, Cr, Fe, Zn, Cd, Sb, Pb and Na. Principal component analysis indicated 5 clear clusters of related elements, with PC1 accounting for 36.2% and PC2 accounting for 25.6% of the variance. Average annual daily traffic was significantly related to Cr, Fe, Cu, Sb, Mn, Al, and Na. Road side monitoring shows consistently higher concentrations than active monitoring sites located further from the edge of the road, indicating a need for increased road side monitoring in Ontario, Canada. Author Keywords:
Effect Assessment of Binary Metal Mixtures of Ni, Cu, Zn, and Cd to Daphnia magna
Mixtures of metals occur in surface waters, toxicity of which has drawn world-wide attention due to their crucial role in both ecotoxicology and regulations. The present research was undertaken to study the acute toxicity of binary mixtures of Ni, Cu, Zn, and Cd to the freshwater organism, Daphnia magna. The experimental approach included single and binary metal toxicity tests based on the 48h acute toxicity bioassay of Environment Canada. The acute toxicity of single metals followed the order of Cd > Cu > Zn > Ni. Based on the calculated 48h EC50 value of single metals, a toxic unit (TU) approach was used to combine two metals in a binary mixture, in which 1TU was equal to the 48h EC50 value of a metal in single exposure. The toxicity of binary metal mixtures to D. magna followed the order of Cu-Cd > Cu-Zn > Zn-Cd > Cu-Ni > Zn-Ni > Cd-Ni, which demonstrated three types of toxicity (i.e., less than additive, additive, and greater additive). Predictions from additivity models (including concentration addition (CA) and independent action (IA) models), a generalized linear model (GLM), and a biotic-ligand-like model (BLM-like) were compared to the bioassay results. The CA and the RA models also predicted three types of toxicity of the binary metal mixtures (i.e., less than additive, additive, and greater than additive). However, the CA model mostly overestimated the toxicity of binary mixtures. Predictions from the GLM supported the inclusion of the interaction between two metals in a mixture to predict the toxicity of binary metal mixtures. The binary metal toxicity was also predicted using a BLM-like model based on the calculated concentrations of free ionic forms of the metals, affinity constants, and toxic potency of each metal. In this model, it was hypothesized that the toxicity of metal mixture is the result of competition of metals with Ca2+ at biotic ligands, which can lead to whole-body deficiency of Ca2+ in D. magna. The BLM-like model provided the toxic potency of single metals with the following order, Cu > Cd > Zn > Ni. Although the prediction of the BLM-like model was not in good agreement with the observed toxicity of binary metal mixtures, an overestimation of risk of mixture toxicity was obtained using this model, which could be promising for use in environmental risk assessment. Author Keywords: biotic ligand model, concentration addition, Daphnia magna, independent action, metal toxicity, modeling
Changes in Forms of Uranium in Anoxic Lake Sediments and Porewaters Near an Abandoned Uranium Mine, Bancroft, Ontario
Soluble uranium (U) has been observed continuously in the porewaters of Bentley Lake, a lake with semi-permanent anoxic sediments, despite the fact that reduced U(IV) is known to be insoluble. To be able to predict the fate and mobility of U that has been deposited in lake sediments, it is very important to understand the factors that determine soluble uranium in anoxic environments. Understanding soluble U species is crucial for predicting its behavior in natural systems as well as for the development of U remediation schemes. To explore the factors affecting soluble U in natural environments, anoxic lake sediments and porewaters were tested using two analytic methods, ICP-MS and ESI-HR-MS. Reduced uranium (U(IV)) can be precipitated as U(IV)-NdF3. Using this method revealed that most of the uranium in porewater is not able to be co-precipitated with NdF3. In addition, UO2+ was found using ESI-HR-MS, showing uranyl ions exist in reduced porewater. However, the UO2+ might be attached to some organic groups rather than present as free ions. Seasonal variation and air exposure experiments on the mobility of U between sediments and porewater were observed to test for changes of the redox state of U as a function of sample collection and storage. The results of this study will contribute to better remediation strategies for U tailings and will help U mining operations in the future. Author Keywords:
Population Genetics and Scarification Requirements of Gymnocladus dioicus
The Kentucky coffee tree (Gymnocladus dioicus) is an endangered tree species native to the American Midwest and Southwestern Ontario. Significant habitat loss and fragmentation due to agricultural, industrial and urban development has caused gradual decline across its native range. The aims of this study were to investigate: (1) patterns of genetic diversity and, (2) genetic differentiation (3) relative levels of sexual vs. clonal reproduction, and (4) potential for reduced genetic diversity at range edge for wild G. dioicus populations. An analysis of variation at nine microsatellite loci from populations in the core of the species distribution in the U.S.A. and 4 regions of Southwestern Ontario indicated that G. dioicus has remarkably high genetic similarity across its range (average pairwise FST= 0.05). Germination trials revealed that the seed coats require highly invasive treatments (e.g. 17.93 mol/L H2SO4) to facilitate imbibition, with negligible germination observed in treatments meant to emulate prevailing conditions in natural populations. Low levels of sexual reproduction, high genetic similarity, and habitat degradation are issues that exist across the entire native range of G. dioicus. Author Keywords:
Hydrochemistry and critical loads of acidity for lakes and ponds in the Canadian Arctic
Threats such as climate change and increased anthropogenic activity such as shipping, are expected to negatively affect the Arctic. Lack of data on Arctic systems restricts our current understanding of these sensitive systems and limits our ability to predict future impacts. Lakes and ponds are a major feature of the Arctic landscape and are recognized as ‘sentinels of change’, as they integrate processes at a landscape scale. A total of 1300 aquatic sites were assessed for common chemical and physical characteristics. Geology type was found to be the greatest driver of water chemistry for Arctic lakes and ponds. Acid-sensitivity was assessed using the Steady State Water Chemistry model and a subset of 1138 sites from across the Canadian Arctic. A large portion of sites (40.0%, n = 455) were classified as highly sensitive to acidic deposition, which resulted in a median value of 35.8 meq·m―2·yr―1 for the Canadian Arctic. Under modelled sulphur deposition scenarios for the year 2010, exceedances associated with shipping is 12.5% (n = 142) and 12.0% (n = 136) for without shipping, suggesting that impacts of shipping are relatively small. Author Keywords: Acidic deposition, Arctic lakes, Critical loads, Shipping emissions, Steady-State Water Chemistry Model, Water chemistry
Frog Virus 3
Understanding the maintenance and spread of invasive diseases is critical in evaluating threats to biodiversity and how to best minimize their impact, which can by done by monitoring disease occurrences across time and space. I sought to apply existing and upcoming molecular tools to assess fluctuations in both presence and strain variation of frog virus 3 (FV3), a species of Ranavirus, across Canadian waterbodies. I explored the temporal patterns and spatial distribution of ranavirus presence across multiple months and seasons using environmental DNA techniques. Results indicate that ranavirus was present in approximately 72.5% of waterbodies sampled on a fine geographical scale (<10km between sites, 7,150 km2), with higher detection rates in later summer months than earlier. I then explored the sequence variability at the major capsid protein gene (MCP) and putative virulence gene (vIF-2α) of FV3 samples from Ontario, Alberta, and the Northwest Territories, with the premise of understanding pathogen movement across the landscape. However, a lack of genetic diversity was found across regions, likely due to a lack of informative variation at the chosen genetic markers or lack of mutation. Instead, I found a novel FV3-like ranavirus and evidence for a recombinant between FV3 and a ranavirus of another lineage. This thesis provides a deeper understanding into the spatio-temporal distribution of FV3, with an idea of how widespread and threatening ranaviruses are to amphibian diversity. Keywords: ranavirus, frog virus 3, amphibians, environmental DNA, phylogenetics, wildlife disease, disease surveillance, major capsid protein, vIF-2α Author Keywords: amphibians, environmental DNA, frog virus 3, phylogenetics, ranavirus, wildlife disease
Moss Biomonitoring of Trace Element Deposition in Northwestern British Columbia, Canada
Atmospheric pollutant deposition poses a risk to ecosystem health; therefore, monitoring the spatial and temporal trends of deposition is integral to environmental sustainability. Although moss biomonitoring is a common method to monitor various pollutants in Europe, offering a cost-effective approach compared to traditional methods of monitoring, it is rarely used in Canada. The focus of this study was a spatial assessment of trace element deposition across a region with a known large-point source of emissions using the moss biomonitoring method. Moss tissues presented strong correlations with modelled deposition in the region, suggesting mosses are a valuable biomonitoring tool of trace element deposition, especially in regions dominated by large-point emission sources. Additionally, a moss species endemic to Canada was compared to commonly used moss species with results indicating this species (Isothecium stoloniferum) can be used reliably as a biomonitor. Moss biomonitoring is recommended as a compliment to fill in spatial gaps in current monitoring networks across the country. Author Keywords: biomonitoring, bryophytes, Hylocomium splendens, moss, Pleurozium schreberi, trace elements
Using environmental DNA (eDNA) metabarcoding to assess aquatic plant communities
Environmental DNA (eDNA) metabarcoding targets sequences with interspecific variation that can be amplified using universal primers allowing simultaneous detection of multiple species from environmental samples. I developed novel primers for three barcodes commonly used to identify plant species, and compared amplification success for aquatic plant DNA against pre-existing primers. Control eDNA samples of 45 plant species showed that species-level identification was highest for novel matK and preexisting ITS2 primers (42% each); remaining primers each identified between 24% and 33% of species. Novel matK, rbcL, and pre-existing ITS2 primers combined identified 88% of aquatic species. The novel matK primers identified the largest number of species from eDNA collected from the Black River, Ontario; 21 aquatic plant species were identified using all primers. This study showed that eDNA metabarcoding allows for simultaneous detection of aquatic plants including invasive species and species-at-risk, thereby providing a biodiversity assessment tool with a variety of applications. Author Keywords: aquatic plants, biodiversity, bioinformatics, environmental DNA (eDNA), high-throughput sequencing, metabarcoding
Hydrological and Flooding Effects on Stream Nutrient Levels
Stream solutes are strongly linked to hydrology, and as such, we sought to better understand how hydrology, particularly flooding, influences nitrogen (N) and phosphorus (P) levels. We used a long-term dataset of monthly water quality samples for many Ontario, Canada, catchments to assess the effects of landscape variables, such as land use and physiography, on the export of nutrients during floods, and to characterize overall concentration-discharge patterns. In general, we found that landscape variables could partially explain the export variation in flood waters, but that the importance of specific variables depended on flood characteristics. We also found that overall concentration-discharge relationships for N and P C were positive, but non-linear, with greater concentrations on the rising limb of the hydrograph depending on the nutrient. With these results, we have identified general patterns between nutrients and hydrology, which will be helpful for managing the ecological effects of flooding. Author Keywords: C-Q relationships, Discharge, Export, Flooding, Nutrients, Thresholds
Discontinuities in stream networks
The network composition hypothesis (NCH) suggests that i) large confluence symmetry ratios (drainage area of the tributary relative to the mainstem) and ii) landscape differences (differences in landscape characteristics between the mainstem and tributary drainages) lead to greater ecological changes below confluences. As a test of the NCH, 34 confluences were sampled in southern Ontario to examine the effects of these two factors on benthic invertebrate communities to infer the degree of ecological change at confluences. Given the typology of streams surveyed, there was subtle evidence that benthic invertebrate communities below confluences changed as a function of confluence symmetry ratio and landscape differences. This indicates that abrupt changes in stream networks are not as common as theory may suggest. Further support for the network composition hypothesis may be found by examining a wider range of stream types and examining single-species responses. Author Keywords: benthic invertebrates, community similarity, landscape characteristics, stream networks, tributary
wind tunnel and field evaluation of the efficacy of various dust suppressants
A series of experiments was designed to assess the relative efficacy of various dust suppressants to suppress PM10 emissions from nepheline syenite tailings. The experiments were conducted in the Trent University Environmental Wind Tunnel, Peterborough, Ontario, and on the tailings ponds at the Unimin Ltd Nephton mine near Havelock, Ontario. Treated surfaces were subjected to particle-free airflow, abrasion with blown sand particles, particle-free airflow after physical disturbance, and were measured independently using a pin penetrometer. In the particle-free wind tunnel tests, three of the surfaces performed well, and PM10 emissions scaled inversely with crust strength. Light bombardment of each surface by saltating sand grains resulted in PM10 emission rates two orders of magnitude higher. All treated surfaces emitted significantly more PM10 after physical disturbance in both the laboratory and field research. The results suggest that the site conditions, inclusive of the potential for dust advection and resuspension, must be taken into account when considering the use of a commercial dust suppressant. Author Keywords: dust suppression, field testing, mine tailings, wind tunnel experiment


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Master of Arts
  • (-) = Environmental science

Filter Results


2003 - 2033
Specify date range: Show
Format: 2023/05/28