Graduate Theses & Dissertations

Pages

Reintroducing species in the 21st century
Climate change has had numerous impacts on species' distributions by shifting suitable habitat to higher latitudes and elevations. These shifts pose new challenges to biodiversity management, in particular translocations, where suitable habitat is considered crucial for the reintroduced population. De-extinction is a new conservation tool, similar to reintroduction, except that the proposed candidates are extinct. However, this novel tool will be faced with similar problems from anthropogenic change, as are typical translocation efforts. Using ecological niche modelling, I measured suitability changes at translocation sites for several Holarctic mammal species under various climate change scenarios, and compared changes between release sites located in the southern, core, and northern regions of the species' historic range. I demonstrate that past translocations located in the southern regions of species' ranges will have a substantial decline in environmental suitability, whereas core and northern sites exhibited the reverse trend. In addition, lower percentages (< 50% in certain scenarios) of southern sites fall above the minimal suitability threshold for current and long-term species occurrence. Furthermore, I demonstrate that three popular de-extinction candidate species have experienced changes in habitat suitability in their historic range, owing to climate change and increased land conversion. Additionally, substantial increase in potentially suitable space is projected beyond the range-limits for all three species, which could raise concerns for native wildlife if de-extinct species are successfully established. In general, this thesis provides insight for how the selection of translocation sites can be more adaptable to continued climate change, and marks perhaps the first rigorous attempt to assess the potential for species de-extinction given contemporary and predicted changes in land use and climate. Author Keywords: climate change, de-extinction, ecological niche models, MaxEnt, reintroduction, translocation
ADAPT
This thesis focuses on the design of a modelling framework consisting of loose-coupling of a sequence of spatial and process models and procedures necessary to predict future flood events for the years 2030 and 2050 in Tabasco Mexico. Temperature and precipitation data from the Hadley Centers Coupled Model (HadCM3), for those future years were downscaled using the Statistical Downscaling Model (SDSM4.2.9). These data were then used along with a variety of digital spatial data and models (current land use, soil characteristics, surface elevation and rivers) to parameterize the Soil Water Assessment Tool (SWAT) model and predict flows. Flow data were then input into the Hydrological Engineering Centers-River Analysis System (HEC-RAS) model. This model mapped the areas that are expected to be flooded based on the predicted flow values. Results from this modelling sequence generate images of flood extents, which are then ported to an online tool (ADAPT) for display. The results of this thesis indicate that with current prediction of climate change the city of Villahermosa, Tabasco, Mexico, and the surrounding area will experience a substantial amount of flooding. Therefore there is a need for adaptation planning to begin immediately. Author Keywords: Adaptation Planning, Climate Change, Extreme Weather Events, Flood Planning, Simulation Modelling
Moving North
Since their successful reintroduction, the eastern wild turkey (Meleagris gallopavo silvestris) has expanded its range north. Due to different and potentially more severe limiting factors, management approaches generalized from studies within the historical range may not be appropriate to apply to northern populations. To better understand northern wild turkey ecology, GPS and VHF transmitters were used to track habitat selection and survival of female turkeys at the species northern range edge in Ontario, Canada. These northern turkeys exhibited larger seasonal home range sizes relative to those in their historical range, and selected deciduous forest and pasture and fields within the study area. Supplemental food was also selected by turkeys when choosing autumn and winter ranges. The northern turkeys also suffered a low annual survival rate, and high mortality from predation. These findings underscore the challenges of maintaining turkey populations in northern environments, and will help inform management strategies. Author Keywords: Eastern Wild Turkey, Euclidean distance analysis, Habitat selection, Meleagris gallopavo silvestris, Northern range edge, Survival
EXPLORING THE EFFECTS OF WATERPOWER OPERATIONS ON RIVERINE ECOSYSTEMS ACROSS NORTHERN ONTARIO
In this study, we attempt to enhance current knowledge of ecological responses to riverine alterations from waterpower by using a bottom-up food up approach. A series of extensive and intensive study components were performed across northern Ontario, Canada, where biological (nutrients, dissolved organic matter (DOM) and periphyton) and physical (water level and thermal regimes) ecological indicators were examined in regards to alterations from dams and waterpower facilities. Overall, we found that the water levels and thermal regimes deviated from their reference condition at sites below the dams, whereas the biological indicators were more resilient to river alterations. Our results suggest that the characteristics of the watershed were influential in controlling the variability of nutrients and DOM resources in rivers within the boreal watersheds of northern Ontario, as well as the for the downstream recovery patterns of the physical indicators. The recovery of the periphyton communities downstream of the dams were also predicted to be cumulatively related to the physical alterations, nutrient availability and the possible displacement of invertebrate communities. Therefore, our bottom-up food web approach was not effective for better understanding how ecological responses from waterpower cascade through aquatic food webs, and instead multiple indicators should be used for examining the ecological responses in these particular river systems. Author Keywords: dissolved organic matter, ecological indicators, river alteration, waterpower facilities
Human Activity and Habitat Characteristics Influence Shorebird Habitat Use and Behaviour at a Vancouver Island Migratory Stopover Site
Pacific Rim National Park Reserve's 16 km of coastal beaches attract many thousands of people and shorebirds every year. To identify locations where shorebirds concentrate and determine the impact of human activity and habitat characteristics on shorebirds, I conducted shorebird and visitor surveys at 20 beach sectors during fall migration in 2011 to 2013 and spring migration in 2012 and 2013. The probability of shorebird presence decreased with increasing number of people at a beach sector. The time that shorebirds spent at a sector increased with increasing sector width. Close proximity to people increased the proportion of time shorebirds spent moving while shorebirds spent more time moving and less time foraging on wider beaches than on narrower ones. My findings suggest that placing restrictions on beach access and fast moving activities (e.g., running) may be necessary to reduce shorebird disturbance at Pacific Rim and similar stopover areas. Author Keywords: habitat use, human disturbance, predation risk, prey availability, shorebird, stopover
Finger-Counting Habits and Number Processing in Canadian and Chinese University Students
In the past few years there has been increasing attention paid to the influence of the motor system on numerical cognition. A 2010 study by Domahs, Moeller, Huber, Willmes and Nuerk tested German and Chinese university students. Number processing time was influenced by cross cultural differences in finger counting habits This thesis replicated and elaborated on the aforementioned research design. This consisted of recruiting a sample of from a Chinese university and comparing them to a sample of Canadian university students. This study also compared within culture differences in participants' starting counting hand using additional SNARC analyses. A second experiment evaluated the possibility that asking participants about finger counting habits prior to the experiment may influence later answers. Cross cultural and within culture differences in finger counting habits influenced number processing. Participants also appeared to be more reliable reporters of their finger counting habits if asked at the end of the task rather than at the beginning. Author Keywords: Canadian, Chinese, Cross-cultural, Finger-counting, Magnitude, Number
An Application of the Sinc-Collocation Method in Oceanography
In this thesis, we explore the application of the Sinc-Collocation method to an oceanography model. The model of interest describes a wind-driven current with depth-dependent eddy viscosity and is formulated in two different systems; a complex-velocity system and a real-value coupled system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities at end-points. In addition, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is less sensitive to numerical errors. We present several model problems to demonstrate the accuracy, and stability of the method. We compare the approximate solutions determined by the Sinc-Collocation technique with exact solutions and also with those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the method we utilized outperforms those used in past studies. Author Keywords: Boundary Value Problems, Eddy Viscosity, Oceanography, Sinc Numerical Methods, Wind-Driven Currents
Nutritional stoichiometry and growth of filamentous green algae (Family Zygnemataceae) in response to variable nutrient supply
In this study, I investigate the effects of nitrogen (N) and phosphorus (P) on the nutritional stoichiometry and growth of filamentous green algae of the family Zygnemataceae in situ and ex situ. I found a mean of Carbon (C):N:P ratio of 1308:66:1 for populations growing in the Kawartha Lakes of southern Ontario during the summer of 2012. FGA stoichiometry was variable, with much of the variation in algal P related to sediment P (p < 0.005, R2 = 0.58). Despite large variability in their cellular nutrient stoichiometry, laboratory analysis revealed that Mougeotia growth rates remained relatively consistent around 0.28 day-1. In addition, Mougeotia was found to be weakly homeostatic with respect to TDN:TDP supply (1/HNP = 0.32). These results suggest that FGA stoichiometry and growth rates are affected by sediment and water N and P. However, they will likely continue to grow slowly throughout the summer despite variable nutrient supply. Author Keywords: Chlorophyll concentration, Filamentous algae, Growth rate, Homeostatic regulation, Nutritional stoichiometry
MOVEMENT PARAMETERS AND SPACE USE FOR THE SOUTHERN HUDSON BAY POLAR BEAR SUBPOPULATION IN THE FACE OF A CHANGING CLIMATE
Changes to the Arctic and sub-Arctic climate are becoming increasingly evident as it warms faster than other areas of the globe, supporting evidence that predictions of future warming will be amplified due to positive feedback mechanisms. The Southern Hudson Bay polar bear (Ursus maritimus) subpopulation is one of the most southerly subpopulations in the world, putting it at increased risk due to effects of climate change. Whereas many other subpopulations have been the subject of intense research and monitoring, little research has been completed detailing the movement behaviour and space use of bears within Southern Hudson Bay. I used detailed movement data collected on female polar bears to establish a baseline of movement information for this subpopulation to which future work can be compared and effects of climate change can be assessed I evaluated the use of core areas during critical periods of the year (breeding and ice breakup) and evaluated common space use as a means of assessing site fidelity during the breeding season. Movement rates and home range sizes were comparable to those of the neighbouring Western Hudson Bay subpopulation. I also found evidence of increased occurrences of long distance, late fall movements along the coast to the northwest, presumably to gain earlier access to first ice. Though space use analysis did not reveal evidence of site fidelity to specific breeding areas in Hudson Bay, I found that core use areas are at risk of substantially shortened ice duration (x¯ =76 days shorter) using projected ice data based on the high emissions A2 climate change scenario. Author Keywords: climate change, Hudson Bay, movement, polar bear, sea ice, utilization distribution
Early Responses of Understory Vegetation to Above Canopy Nitrogen Additions in a Jack Pine Stand in Northern Alberta
Abstract Early Responses of Understory Vegetation After One Year of Above Canopy Nitrogen Additions in a Jack Pine Stand in Northern Alberta Nicole Melong Nitrogen (N) emissions are expected to increase in western Canada due to oil and gas extraction operations. An increase in N exposure could potentially impact the surrounding boreal forest, which has adapted and thrived under traditionally low N deposition. The majority of N addition studies on forest ecosystems apply N to the forest floor and often exclude the important interaction of the tree canopy. This research consisted of aerial NH4NO3 spray applications (5, 10, 15, 20, 25 kg N ha-1yr-1) by helicopter to a jack pine (Pinus banksiana Lamb.) stand in the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. The main objective was to assess the impacts of elevated N after one year of treatment on the chemistry of understory vegetation, which included vascular plants, terricolous lichens, epiphytic lichens and a terricolous moss species. Changes in vegetation chemistry are expected to be early signs of stress and possible N saturation. Increased N availability is also thought to decrease plant secondary compound production because of a tradeoff that exists between growth and plant defense compounds when resources become available. Approximately 60% of applied N reached the ground vegetation in throughfall (TF) and stemflow (SF). Nitrate was the dominant form of N in TF in all treated plots and organic N (ON) was the dominant form of N in SF in all plots. The terricolous non-vascular species were the only understory vegetation that responded to the N treatments as N concentration increased with increased treatment. Foliar chemistry of the measured epiphytic lichens, vascular species, and jack pine was unaffected by the N treatments. Based on biomass measurements and N concentration increases, the non-vascular terricolous species appear to be assimilating the majority of TF N after one year. Vegetation from the high treatment plot (25 kg N ha-1yr-1) was compared to a jack pine forest receiving ambient high levels of N (21 kg N ha-1yr-1) due to its proximity to Syncrude mining activities. Nitrogen concentrations in plant tissues did not differ between the two sites; however, other elements and compounds differed significantly (Ca, Mg, Al, Fe). After one year of experimental N application, there were no environmental impacts consistent with the original N saturation hypothesis. Author Keywords: Athabasca Oil Sands Region, Canopy Interactions, Jack Pine, Nitrogen, Secondary Chemistry, Understory Vegetation
Effect of Water Surface Simulated Rain Drop Impacts on Water to Air Chemical Transfers of Perfluorinated Carboxylic Acids (PFCAs)
Perfluorinated carboxylic acids (PFCAs) are anthropogenic environmentally ubiquitous surfactants that tend to concentrate on water surfaces. This investigation looked at the effect of simulated rain on the atmospheric concentration of a suite of PFCAs (C2 - C12) above the bulk water system. Increased air concentrations of all PFCAs were detected during simulated rain events. Long chain PFCAs (>C8) were found to be much more concentrated in the air above the bulk water system than their short chain counter parts (
Habitat use and community structure of grassland birds in southern Ontario agro-ecosystems.
Most grassland bird populations are in decline, so it is becoming increasingly important to understand how they use agricultural field types and form their communities. I performed point counts in cultural meadow, intensive agriculture, and non-intensive agriculture areas in 2011 and 2012. Generalized linear models were used to determine the habitat relationships of six focal species. I found that non-intensive agriculture was used most often and intensive agriculture was often avoided, but there were exceptions which indicate habitat use can be species-specific. I determined in which habitats competition was likely occurring and which species pairs were competing in 2011. In 2012, I experimentally tested these relationships by introducing artificial competitors onto sites. By comparing presence-absence data from 2011 to 2012, I found evidence of habitat-mediated interspecific and conspecific attraction involving Bobolink and Grasshopper Sparrow. This research contributes to the current understanding of grassland bird community ecology and conservation. Author Keywords: agriculture, BACI, community ecology, habitat use, species at risk, species interactions

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Burness
  • (-) = Master of Science
  • (-) ≠ Freeland

Filter Results

Date

1974 - 2024
(decades)
Specify date range: Show
Format: 2024/02/26