Graduate Theses & Dissertations


Effect of Attending a Virtual Oncology Camp on Childhood Cancer Patient's Pyshcosocial Functioning and Parental Stress - A Pilot Study
Objectives/purpose: The current study examined whether attending a 1-month virtual oncology camp (VOC) improved resilience and hope in childhood cancer patients and parental/caregiver stress. Methods:Childhood cancer patients/survivors and their parent/caregivers enrolled for VOC, participated in an online anonymous survey: before, after and 3-months after VOC. The survey included the Child and Youth Resilience Measure (CYRM) and the Snyder’s Children’s Hope Scale (CHS) for the childhood cancer patients/survivors and the Pediatric Inventory for Parents (PIP) for parent/caregivers. Results:CYRM scores increased from T1 to T2 (d=0.86). Compared to T1, at T2 CHS scores also increased (d=1.33). Both CHS and CYRM scores remained higher at T3 compared with T1 (d=1.34; d=0.86). There were no changes in PIP scores between any time points. Conclusion and significance: Our study demonstrated that participation in a VOC improved children’s resilience and hope but did not change parental stress. Highlighting the clinical significance of these VOCs and the impacts they have on childhood cancer patients/survivors. Author Keywords: cancer, children, hope, parental stress, resilience, virtual oncology camp
Impacts of Cover Crops on Soil Health, Soil Nitrogen Dynamics, and Cytokinin Profiles
In Ontario, the dominant cash crop rotations consist of soybean (SB), which is a leguminous crop grown in rotation with maize (MZ) and winter wheat (WW). In addition to these crops, some farmers integrate cover crops (CC) into crop rotation, especially during the fallow period and winter seasons, to reduce nitrogen (N) losses via nitrate (NO3-) leaching and emission of N2 and the greenhouse gas nitrous oxide (N2O). This thesis focused on understanding the impact of crop phases in a MZ-(SB-WW)-CC rotation on the abundance of N-cycling bacterial communities that mediate nitrification and denitrification pathways. In addition, the influence of CCs on soil cytokinin (CK) profiles, which are plant growth-promoting hormones, were studied in a greenhouse trial to assess their potential impacts when integrating CCs into crop rotations. In particular, the relationship between traditional soil health parameters and the soil CK profiles was studied to understand how CKs might reflect biotic interactions and soil vitality. Results indicate N fertilizer application mono ammonium phosphate (MAP) and starter N:P: K (24:6:24) during WW planting in fall largely supported nitrifying bacterial communities (amoA) and potentially contributed to NO3- leaching. Management of MZ, which included spring-applied MAP resulted in larger denitrifying (nirK) bacterial communities, increasing the potential risk of N-loss via emission of dinitrogen gas (N2) and greenhouse gas N2O. However, CC soils had significantly lower nirK than MZ, reflecting the importance of strong and deep root systems of CCs, which have a higher ability to scavenge the substrates for denitrifying communities (NO3-). This highlights the importance of growing CCs in reducing the potential risk for N-loss via leaching and denitrification. Additionally, in the greenhouse trial, the ability of CCs to affect CK was detected, highlighting the importance of integrating CC in crop rotations. This is particularly noteworthy, given that total CK profiles showed strong associations with traditional soil health parameters such as labile or active carbon and soil microbial community diversity. It was concluded that total soil CK can be used as a novel and dynamic soil health measure. Future research on quantifying N2O fluxes and levels of NO3- in leachates would provide a more precise understanding of the impact of different crop rotation phases on N-dynamics in these fields. Further studies on single or combined measures of soil CKs are warranted to develop its potential as a practical and effective soil health parameter. Author Keywords: Cover crops, Crop rotations, Cytokinin hormone, Nitrogen Cycle, qPCR, Soil health
Contributions of Mayflies (EPHEMEROPTERA
Walleye (Sander vitreus) are an ecologically and economically significant fish harvestedby recreational and commercial fisheries across Ontario. Adult Walleye are piscivores, but anecdotal evidence from anglers suggests that Walleye often target aquatic insects such as mayfly larvae (Ephemeroptera). My research examined the diet of Walleye caught from May to September in Lake St. Joseph in northern Ontario. I examined the stomach contents of angle harvested Walleye to identify the prey over two summers. Through morphological analysis of stomach contents, mayflies were found to be a significant prey source for Walleye, during larval emergence events in early summer, and to a lesser extent throughout the rest of the summer season. These findings are important for long term management of Walleye populations and associated resources. I also assess the potential and problems of Walleye management and research from my experiences of having worked with industry, government, and university partners on this project. Author Keywords: alternative prey, Food web interactions, invertebrate, piscivore, Predator prey interactions
Differences and similarities in exploration and risk-taking behaviours of two Myotis bat species.
AbstractDifferences and similarities in exploration and risk-taking behaviours of two Myotis bat species. Laura Michele Scott Behaviours that are repeatable across circumstances and time determine an individual’s personality. Personality and behavioural variation are subject to selective pressures, including risks related to the use of different habitat types. I explored the ecological and evolutionary consequences of habitat selection by comparing the behaviour of two sympatric bat species, Myotis leibii and M. lucifugus. These species display overlap in roosting preferences, however, M. leibii tend to roost in crevices on the ground, while M. lucifugus tend to roost in crevices or cavities that are raised off the ground. I hypothesized that the habitat selection patterns of these two species create behavioural reaction norms at the species level. I predicted that ground roosting behaviour favours bolder personality and more exploratory and active traits when compared with bats that do not ground roost. I examined inter- and intra-specific variation in behaviour using a modified, three-dimensional open-field test and quantified the frequency and duration of behaviours such as flying, landing, and crawling. Bats were continuously video-recorded over 1-hour nocturnal and diurnal trials. I used a priori mixed models with combinations of individual characteristics and life-history traits to select the models that best describe each species. We found that M. leibii (n = 15) displayed more exploratory and bolder behaviours than M. lucifugus while on the ground (n = 21) and higher overall activity during the trial. I also found that M. leibii displayed crawling behaviours and movements consistent with foraging while on the ground which is a rare behaviour in bats and only observed in a few species (Desmodus rotundus and Mystacina tuberculate to my knowledge). Future research should explore biomechanical adaptations associated with ground-foraging in M. leibii. Author Keywords: Bats, Behaviour, Exploration, Myotis leibii, Myotis lucifugus, Roosting
Assessing habitat suitability and connectivity for an endangered salamander complex
Habitat loss and fragmentation have significantly contributed to amphibian population declines, globally. Evaluating the state of remaining habitat patches can prove to be beneficial in identifying areas to prioritize in conservation efforts. Pelee Island, Ontario is home to a complex of salamanders including small-mouthed salamanders (Ambystoma texanum), blue-spotted salamanders (A. laterale) and unisexual Ambystoma (small-mouthed salamander dependent population). These populations have declined from intense landscape changes since the late 1800s, particularly from the historical drainage of wetlands. In this thesis, I evaluated the suitability and connectivity of habitat patches occupied by these salamanders to assess the size of, and dispersal capabilities between, remaining habitat patches. I found that there was a low amount of suitable terrestrial habitat available for this complex of salamanders, and existing habitat patches were small and isolated. Forested areas and non-breeding wetlands were considered to be suitable habitat when adjacent to existing breeding locations, suggesting that these habitats should be a focus for conservation efforts. Notably, intervention may be necessary to maintain this amphibian complex as many assemblages are isolated from one another and potential corridors currently consist of primarily unsuitable habitat. Given that much of the salamander complex is reliant on one species for reproduction, the long-term viability of this population of Ambystoma salamanders may rely on the enhancement of suitable habitat near current breeding sites by conservation organizations and local stakeholders. Ultimately, the approach used in this thesis emphasizes the value of evaluating habitat within a fragmented landscape to focus conservation efforts on imperilled species. Author Keywords: amphibians, connectivity, habitat suitability, landscape fragmentation, landscape resistance, unisexual
Molecular Architectures for Improved Biomaterials Derived from Vegetable Oils – Application to Energy Storage and Lubricants
The replacement of petroleum with renewable feedstock for energy and materials has become a priority because of concerns over the environment and finite nature of petroleum. The structures of the available natural biomass feedstocks fall short in delivering key functionality required in materials such as lubricants and phase change energy storage materials (PCMs). The approach taken in this thesis was to combine select functional groups with vegetable oil derivatives to create novel PCMs and lubricantswhich deliver desired functionality. One series of diester PCMs were prepared with terephthalic acid and fatty alcohols to address known shortcomings of esters. The second class of PCMs are sulfones prepared from oxidation of fatty sulfides to improve thermal energy storage. Overall, the new PCMs presented narrow phase change temperature ranges, high transition temperature (between 67 to 110℃), high transition enthalpy (210 to 266J/g), minimal supercooling and congruent phase transitions unaffected by cooling rates. They also demonstrated higher thermal degradation stability with onset of degradation from 290 to 310℃. The series of lubricants studied consists of sulfide and sulfonyl functional groups attached to the unsaturation sites of oleyl oleate as pendant groups to improve the thermal and flow properties. The new lubricants present subzero crystallization temperatures, very low crystallization enthalpy and dynamic viscosity as high as 180mPas. Furthermore, they also presented high onset of degradation (up to 322℃) and oxidation (up to 298℃). The PCMs and lubricants of the present thesis demonstrate that select functional groups can be used with common structural elements of vegetable oil such as fatty acids, ester groups and unsaturation sites to make a variety of molecular structures capable of delivering desired properties Author Keywords: Crystal Structure, Lubricant, Phase Change Material, Renewable, Structure-Property Relationships, Vegetable Oil
Clonal structure and mating patterns in a natural population of Sagittaria latifolia
Increased plant size is expected to have negative consequences for mating by increasing pollen transfer among the same plant. However, recent theoretical studies have demonstrated that this may not be true for clonal plants. Instead, clonal expansion could enhance outcrossing opportunities without increasing selfing by reducing distances to potential mates. I investigated how the spatial structure of clones influences patterns of pollen dispersal, selfing rates and siring success in a natural population of Sagittaria latifolia. I found that pollen dispersal distances typically exceeded the spatial extent of clones and there was a positive association between clone size and the likelihood that clones were intermingled. Together, this resulted in a weak positive association between clone size and selfing rates, and a strong positive association between clone size and outcross siring success. This is the first empirical support for the theoretical expectation that any negative effects of selfing in large clones might be offset by increased siring success. Author Keywords: clonal growth, fitness gain curve, geitonogamy, plant mating, plant reproductive ecology, sex allocation theory
mycobiome and skin chemistry of bat wings in relation to white-nose syndrome
White-nose syndrome (WNS) is a skin disease of bats caused by the fungus Pseudogymnoascus destructans (Pd) that damages flight membranes during hibernation and can lead to death. The disease causes mortality of multiple bat species in eastern North America and is spreading into western North America. Future impacts of WNS on naïve bat populations are unknown. Variation in host susceptibility occurs among and within species, but mechanisms driving this variation are unclear. Multiple studies have characterized immunological responses to WNS, but skin physiology as a barrier to pathogens is understudied. The unique ability of Pd to actively penetrate the normal, intact skin of its mammalian host makes WNS an interesting study system to understand skin defenses. Aspects of the mammalian skin environment that can influence disease susceptibility include pH, sebaceous lipids, and microbiomes. I found skin mycobiomes of WNS-susceptible species had significantly lower alpha diversity and abundance compared to bat species resistant to Pd infection. Using these data, I predicted that most naïve bat species in western North America will be susceptible to WNS based on the low diversity of their skin mycobiomes. Some fungi isolated from bat wings inhibited Pd growth in vitro, but only under specific salinity and pH conditions, suggesting the microenvironment on wings can influence microbial interactions and potentially WNS-susceptibility. I measured the wing-skin pH of bats in eastern Canada and found that Eptesicus fuscus (WNS-tolerant) had more acidic skin than M. lucifugus (WNS-susceptible). Differences in sebum quantity and composition among and within mammalian species may help explain variation in skin disease susceptibility and the composition of skin microbiomes. This is due to the antimicrobial properties of sebum and the use of sebum as a nutrition source by microbes. Outcomes of this work further our understanding of inter- and intra-specific differences among bat species and individuals in skin mycobiomes and physiology, which may contribute to variation in WNS-susceptibility. Future research should focus on characterizing the physical and chemical landscape of skin as this is essential for understanding mechanisms structuring skin microbial assemblages and skin disease susceptibility in wildlife. Author Keywords: bat, fungi, microbiome, mycology, physiology, white-nose syndrome
Mfsd8 regulates growth and multicellular development in Dictyostelium discoideum
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, are a family of inherited neurodegenerative lysosomal storage disorders. CLN7 disease is a subtype of NCL that is caused by mutations in the MFSD8 gene. MFSD8 encodes a lysosomal transmembrane protein that is predicted to play a role in transporting small substrates across membranes. However, little is known about its role and substrate specificity. Previous work identified an ortholog of human MFSD8 in the social amoeba Dictyostelium discoideum and reported its localization to endocytic compartments. In this study, the effects of mfsd8 loss during Dictyostelium growth and multicellular development were further characterized. Dictyostelium mfsd8- cells displayed increased rates of proliferation and pinocytosis in liquid media. During growth, loss of mfsd8 altered lysosomal enzymatic activities and reduced the intracellular and extracellular levels of autocrine proliferation repressor A. mfsd8- cells grown on a lawn of bacteria formed plaques in a shorter period of time compared to WT cells, providing additional support for the enhanced growth of mfsd8- cells. Upon starvation, the aggregation of mfsd8- cells was delayed, and mfsd8- cells formed more mounds that were smaller in size, which may be attributed to the reduced cell-substrate adhesion and altered lysosomal enzymatic activities observed for mfsd8- cells. Following aggregation, tipped mound formation was delayed, however, loss of mfsd8 did not affect the timing of slug/finger and fruiting body formation. Additionally, slug migration was reduced in mfsd8- cells. These aberrant phenotypes, excluding fruiting body formation, were effectively or partially rescued when Mfsd8-GFP was introduced into mfsd8- cells. Overall, these results show that Mfsd8 plays a role in regulating growth and developmental processes in Dictyostelium via lysosomal-associated functions. Author Keywords: CLN7, Dictyostelium discoideum, Lysosomes, MFSD8, Neuronal Ceroid Lipofuscinoses


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Materials Science
  • (-) = Environmental and Life Sciences

Filter Results


2003 - 2033
Specify date range: Show
Format: 2023/03/24