Graduate Theses & Dissertations


Tracking Mercury and Mercury Stable Isotopes Throughout the Wabigoon/English River System
In the Wabigoon/English River system, mercury concentrations downstream from Dryden, ON, where there was a former chlor-alkali plant, remain elevated in sediments and biota. Understanding the current extent and severity of mercury contamination downstream from the former chlor-alkali plant is of great interest in furthering the clean-up of mercury within the traditional territory of Asubpeeschoseewagong Netum (Grassy Narrows) First Nation. The objective of this study was to evaluate the current level and extent of mercury contamination within sediments, crayfish, Hexagenia mayflies, yellow perch, spottail shiner and walleye in the Wabigoon/English River system. An additional objective was to use mercury stable isotope analysis to distinguish between legacy mercury from the former chlor-alkali plant and mercury from geogenic sources. Mercury contamination within surface sediments and biota at locations as far as 178 kms downstream of the historical source of mercury contamination are elevated relative to the reference lake, Wabigoon Lake. Isotope ratios in young of the year fish and sediments collected from within the system were distinct from fish from the reference lake, Wabigoon Lake, indicating that anthropogenic mercury contamination is distinguishable from geogenic mercury. Author Keywords:
Effects of wood ash addition on soil chemical properties and sugar maple (Acer saccharum, Marsh.) seedling growth in two northern hardwood forest sites in central Ontario
One possible solution to acidification and losses of base cations in central Ontario forest soils may be the application of wood ash. Wood ash is generally high in pH and contains large amounts of calcium (Ca) and other nutrients essential for ecosystem health, however it also contains trace metals. Understanding the chemistry of soils following ash application to forests is crucial for future policy recommendations and remediation efforts. In this study, soil and soil water chemistry was measured at two acidic forest sites in central Ontario. Sugar maple (Acer saccharum, Marsh.) seedling growth and chemistry, as well as understory vegetation composition, were also measured. At site one, plots (2 m x 2 m) were established with sugar maple, white pine (Pinus strobus L.) and yellow birch (Betula alleghaniensis Britt.) residential wood ash treatments and applied at rates of 0 and 6 Mg ha-1. The effects of residential wood ash on soil and understory vegetation were measured three- and 12-months following ash addition. At site two, plots (5 m x 5 m) were established with both fly and bottom industrial grade bark ash treatments of 0, 4 and 8 Mg ha-1 (n=4), and tension lysimeters were positioned in each plot at 30, 50, and 100 cm depths. The effects of industrial grade wood ash on soil, soil water and understory vegetation were measured four years following ash addition. Metal concentrations in the ashes were generally low but were higher in the fly ash and yellow birch ash types. At site one, significant increase in soil pH, and Ca and magnesium (Mg) concentrations were observed after three months, however changes varied by treatment. Some metal concentrations increased in the upper organic horizons, but metals were likely immobilized in the soil due to increases in soil pH, electrical conductivity (EC) and high organic matter content of the soil. After one year, changes to metal concentrations in soils could be seen in mineral horizons, and a few metals (aluminum (Al), zinc (Zn), copper (Cu), chromium (Cr), strontium (Sr)) increased in treatment plots. At site two, the effects of industrial-grade bark ashes on soil pH could still be seen after four years and soil water metal concentrations were not elevated relative to controls. Changes to understory vegetation composition following ash application were observed, but ash addition had no significant effect on sugar maple seedling growth (root:shoot ratio) and did not lead to significant increases in foliar metal concentrations. There were significant differences in root chemistry, suggesting metal translocation and uptake could be restricted. Mass balance estimates indicate that the organic horizon is a sink for all metals and simulated drought in this horizon led to a decrease in soil pH and increase in soil water metal concentration, but this occurred in all treatments including control. These results suggest that application of industrial and residential wood ash in moderate doses with trace metal concentrations below or near regulatory limits will increase soil pH and base cation concentrations, as well as increase seedling tissue nutrient concentrations in northern hardwood forest soils. However, depending on the parent material of the ash, increased metal availability can also occur. Author Keywords: Acer saccharum, calcium decline, forest soil amendment, Haliburton Forest and Wildlife Reserve, heavy metal, wood ash
Assessing basin storage
Water storage is a fundamental component of drainage basins, controlling the synchronization between precipitation input and streamflow output. The ability of a drainage basin to store water and regulate streamflow may mediate sensitivity to climate and land cover change. There is currently no agreement on the best way to quantify basin storage. This study compares results of a combined hydrometric and isotopic approach for characterizing inter-basin differences in storage across the Oak Ridges Moraine (ORM) in southern Ontario. The ratio of the standard deviation of the stable isotope signature of streamflow relative to that of precipitation has been shown to be inversely proportional to mean water transit times, with smaller ratios indicating longer water transit times and implying greater storage. Stable isotope standard deviation ratios were inversely related to baseflow index values. Basins demonstrating longer transit times were associated with hydrological characteristics that promote infiltration and recharge of storage. Author Keywords: baseflow, basin storage, climate change, mean transit time, Oak Ridges Moraine, stable isotopes
Augmented Reality Sandbox (Aeolian Box)
The AeolianBox is an educational and presentation tool extended in this thesis to represent the atmospheric boundary layer (ABL) flow over a deformable surface in the sandbox. It is a hybrid hardware cum mathematical model which helps users to visually, interactively and spatially fathom the natural laws governing ABL airflow. The AeolianBox uses a Kinect V1 camera and a short focal length projector to capture the Digital Elevation Model (DEM) of the topography within the sandbox. The captured DEM is used to generate a Computational Fluid Dynamics (CFD) model and project the ABL flow back onto the surface topography within the sandbox. AeolianBox is designed to be used in a classroom setting. This requires a low time cost for the ABL flow simulation to keep the students engaged in the classroom. Thus, the process of DEM capture and CFD modelling were investigated to lower the time cost while maintaining key features of the ABL flow structure. A mesh-time sensitivity analysis was also conducted to investigate the tradeoff between the number of cells inside the mesh and time cost for both meshing process and CFD modelling. This allows the user to make an informed decision regarding the level of detail desired in the ABL flow structure by changing the number of cells in the mesh. There are infinite possible surface topographies which can be created by molding sand inside the sandbox. Therefore, in addition to keeping the time cost low while maintaining key features of the ABL flow structure, the meshing process and CFD modelling are required to be robust to variety of different surface topographies. To achieve these research objectives, in this thesis, parametrization is done for meshing process and CFD modelling. The accuracy of the CFD model for ABL flow used in the AeolianBox was qualitatively validated with airflow profiles captured in the Trent Environmental Wind Tunnel (TEWT) at Trent University using the Laser Doppler Anemometer (LDA). Three simple geometries namely a hemisphere, cube and a ridge were selected since they are well studied in academia. The CFD model was scaled to the dimensions of the grid where the airflow was captured in TEWT. The boundary conditions were also kept the same as the model used in the AeolianBox. The ABL flow is simulated by using software like OpenFoam and Paraview to build and visualize a CFD model. The AeolianBox is interactive and capable of detecting hands using the Kinect camera which allows a user to interact and change the topography of the sandbox in real time. The AeolianBox’s software built for this thesis uses only opensource tools and is accessible to anyone with an existing hardware model of its predecessors. Author Keywords: Augmented Reality, Computational Fluid Dynamics, Kinect Projector Calibration, OpenFoam, Paraview
Study of Aerosols for use in Water Remediation of Pharmaceutical Pollutants
In this thesis, aerosolization was studied as a possible means of water remediation for several environmentally relevant pharmaceutical pollutants, known for their persistence in wastewater effluent and potable water sources. Seven different pharmaceutical compounds and a well-known plasticizer were all shown to decrease considerably in concentration in aerosol that was produced and subsequently collected within a short time span. Strong evidence is presented that an enhanced rate of partitioning into the gas phase at the air-water interface of water droplets exists for every compound tested relative to that occurring in bulk solution. UV photolysis in aerosols was also explored and shown for sulfamethoxazole to be at least an order of magnitude faster in aerosols then in bulk solution. The implications towards both the environmental fate, and removal of these compounds from water sources is discussed. Author Keywords: Aerosols, Air-water partitioning, Pharmaceuticals, Photolysis, Sulfamethoxazole
Shorebird Habitat Use and Foraging Ecology on Bulls Island, South Carolina During the Non-Breeding Season
Recent declines in North American shorebird populations could be linked to habitat loss on the non-breeding grounds. Sea-level rise and increased frequency of coastal storms are causing significant erosion of barrier islands, thereby threatening shorebirds who rely on shoreline habitats for foraging. I conducted shorebird surveys on Bulls Island, South Carolina in the winters of 2018 and 2019 and examined habitat selection and foraging behaviour in Dunlin (Calidris alpina), Sanderling (Calidris alba), Semipalmated Plovers (Charadrius semipalmatus), and Piping Plovers (Charadrius melodus). Area, tidal stage, and invertebrate prey availability were important determinants of shorebird abundance, behaviour, and distribution. My study highlights the importance of Bulls Island’s habitat heterogeneity to supporting a diverse community of non-breeding shorebirds. Considering both the high rate of erosion and the increased frequency of disturbance along the shoreline of the island, intertidal habitats should be monitored to predict negative effects of changes in habitat composition and area on non-breeding shorebirds. Author Keywords: foraging behaviour, habitat loss, habitat selection, invertebrate prey, non-breeding, shorebirds
Effects of Local, Landscape, and Temporal Variables on Bobolink Nest Survival in Southern Ontario
Populations of grassland birds, including the Bobolink (Dolichonyx oryzivorus), are experiencing steep declines due to losses of breeding habitat, land use changes, and agricultural practices. Understanding the variables affecting reproductive success can aid conservation of grassland species. I investigated 1) whether artificial nest experiments accurately estimate the impacts of cattle on the daily survival rate of Bobolink nests and 2) which local, landscape, and temporal variables affect daily survival rate of Bobolink nests in Southern Ontario. I replicated an artificial nest experiment performed in 2012 and 2015 to compare the daily survival rate of artificial and natural nests at multiple stocking rates (number of cattle × days × ha-1). I also monitored Bobolink nests and modeled daily survival rate using local variables (e.g., stocking rate, field use, patch area), landscape variables (e.g., percent forest within 2, 5, and 10 km), and temporal variables (e.g., year, date of season). Results indicate that artificial nest experiments using clay shooting targets overestimated the impacts of stocking rate on the daily survival rate of Bobolink nests. With natural nests, region (confounded by year and field use), stocking rate, and date of season were the strongest predictors of daily survival rate; with stocking rate and date of season both having a negative effect. Management should focus on conserving pastures with low stocking rates (< 40 cattle × days × ha-1), late-cut hayfields, fallow fields, and other grasslands to protect breeding grounds for the Bobolink and other declining grassland bird species. Author Keywords: Bobolink, Daily survival rate, landscape variables, local variables, Nest survival, temporal variables
Fingerprinting of dissolved organic matter and copper ligands in the Canadian Arctic and North Pacific Ocean
Dissolved organic matter (DOM) in oceans provides nutrients and ultraviolet radiation protection to microbes. Some DOM compounds can chelate with metals, including copper, controlling their transport and bioavailability in marine systems. As copper functions as both a nutrient and toxicant, studies into the chemical structures of Cu-ligands is important, however currently limited. In this thesis, the chemical composition of total and Cu-binding DOM is investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the Canadian Arctic and North Pacific. Chapter 2 reveals chemical differences in DOM composition between the southern and northern Canada Basin, revealing the influence of terrestrial and biological sources. Chapter 3 shows the uniqueness of Cu-binding ligands found in the Canadian Arctic and North Pacific Ocean. Studying the composition of DOM gives insight into the chemical diversity of marine DOM, helping to predict the effects of a changing climate on marine ecosystems. Author Keywords: biological, dissolved organic matter, fluorescence, immobilized metal-ion affinity chromatography, mass spectrometry, terrestrial
Observation-based assessment of atmospheric sulphur surrounding a major aluminum smelter in British Columbia, Canada
Recent developments at an aluminum (Al) smelter in Kitimat, BC resulted in a permitted increase of 27 to 42 tonnes of sulphur dioxide (SO2) emissions per day. Gaseous SO2 is a pollutant known to contribute to acidic deposition through processes of wet and dry deposition and can additionally react in-atmosphere to form particulate sulphate (pSO42-). Between June 2017 to October 2018, an extensive network consisting of ion exchange resin (IER) column, passive-diffusive, and active filter-pack samplers was established to provide an estimate of total annual S deposition and pSO42- variation throughout the Kitimat Valley. Filter-pack sampling determined the relative concentration of pSO42- increased downwind of the smelter. Comparison of observation-based and modelled total annual deposition suggested CALPUFF was accurate in representing the spatial viability of S deposition (R2 = > 0.85). However, the model appeared to overpredict near-field deposition suggesting the potential of underestimation further downwind of the smelter. Author Keywords: aluminum smelter, atmospheric deposition, filter-pack sampler, ion-exchange column sampler, pSO42-, SO2
Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles
Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding’s turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding’s turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles’ home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding’s turtles and spotted turtles suggests that these habitats do not automatically constitute “unsuitable habitats” for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles. Author Keywords: Blanding’s turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca
Soil Geochemistry and Normative Mineralogy across Canada
Soils play a crucial role in ecosystem functioning, for example, soil minerals provide important provisioning and regulate ecosystem services. This study used major soil oxides from the North American Soil Geochemical Landscapes Project (n=560) to assess elemental associations and infer soil minerals through exploratory data analysis and to determined quantitative soil mineralogy using a normative method, Analysis to Mineralogy (n=1170). Results showed elemental variability of oxides across the provinces of Canada and strong correlations occurred between elements indicative of soil mineral composition (e.g., Silicon and Aluminium). Principal component analysis inferred soil minerals from soil oxides trends on biplots and classified minerals, generally, as carbonates, silicates, and weathered secondary oxides. Spatial variability in minerals (quartz, plagioclase, potassium feldspar, chlorite, and muscovite) was related to the underlying bedrock geology. The use of Analysis to Mineralogy led to a reliable method of quantifying soil minerals at a large scale. Author Keywords: Analysis to Mineralogy, Exploratory data analysis, Normative procedures, North American Soil Geochemical Landscapes Project, Soil geochemistry, Soil mineralogy
An Investigation of Rare Earth Element Patterns and an Application of Using Zn and Cd Isotope Ratios in Oysters to Identify Contamination Sources in an Estuary in Southern China
Environmental monitoring and investigation of metal biogeochemical cycling has been carried out in the Pearl River Estuary (PRE), an important and complex system in Southern China. In this study, rare earth element (REE) patterns as well as isotope ratios (i.e., Zn and Cd) were evaluated as tools to identify contamination sources in environmental compartments (i.e., water and suspended particles (SP)) as well as in oysters collected from estuarine sites. Results show elevated concentrations (also called anomalies) of Pr, Nd, Dy and Ho, relative to other REE elements, in water samples, potentially from REE recycling and other industrialized activities in this area. Unlike water samples, no REE anomalies were found in SP or oysters, suggesting that the dominate REE uptake pathway in oysters is from particles. Secondly, site to site variations in Zn isotope ratios were found in water and SP, showing the complexity of the source inputs in this area. Also, in estuarine locations, larger spatially differences in Zn isotope ratios were found in water collected in wet season than those in dry season, which may due to mixing of different source inputs under the water circulations in different seasons. A series of laboratory experiments were conducted during which changes in Zn isotope ratios were measured during uptake under varying salinity and Zn concentrations and during depuration. Neither in vivo Zn transportation among the various tissues within the oysters nor water exposure conditions (i.e., different salinities or Zn concentrations) caused Zn isotopic fractionation in the oysters. Cd and Zn isotope ratios were also determined in oysters obtained from the PRE. Large variations in Cd and Zn isotope ratios suggest that oysters were receiving contaminants from different input sources within the PRE. A consistent difference (approximately 0.67‰) was observed for Zn isotope ratios in oysters collected from the east side of the PRE compared to those from sampling locations on the western side of the PRE, suggesting different Zn sources in these two areas. Ultimately, by combining biogeochemistry with physiology, this study represents a first attempt to assess pollution status, monitor contaminants using oysters and model/identify contamination sources using both REEs and metal isotope ratios. Author Keywords:


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Master of Arts
  • (-) = Environmental science

Filter Results


2003 - 2033
Specify date range: Show
Format: 2023/10/01