Graduate Theses & Dissertations

Pages

Pathways to Innovation
Research and development activities conducted at universities and firms fuel economic growth and play a key role in the process of innovation. Specifically, prior research has investigated the widespread university-to-firm research development path and concluded that universities are better suited for early stage of research while firms are better positioned for later stages. This thesis aims to present a novel explanation for the pervasive university-to-firm research development path. The model developed uses game theory to visualize and analyze interactions between a firm and university under different strategies. The results reveal that as academic research signals knowledge it helps attract tuition paying students. Generating these tuition revenues is facilitated by university research discoveries, which, once published, a firm can build upon to make new innovative products. In an environment of weak intellectual property rights, moreover, the university-to-firm research development path enables firms to bypass the hefty costs that are involved in basic research activities. The model also provides a range of solution scenarios where a university and firm may find it viable to initiate a research line. Author Keywords: Game theory, Intellectual property rights, Nash equilibrium, Research and development, University to-firm research path
Nitrogen and phosphorus bioavailability in soil amended with alkaline stabilized biosolids
Agricultural land application of biosolids recycles nutrients and organic matter to the soil, however the effect of treatment process on nutrient availability requires further research for better nutrient management. This study examined the bioavailability of nitrogen (N) and phosphorus (P) in alkaline treated biosolids (TB) when amended into three different soils. Despite a 45% reduction in total N and P content during treatment, TB did not show reduced N or P availability compared with sewage sludge (SS). Results of a corn growth experiment and a soil incubation showed that TB amendment resulted in little mineralization and generally net immobilization of N, and 2% total P availability to corn from TB. Results suggest that TB are not a source of bioavailable N in the short-term, but can be used as a P amendment for corn. Nutrient management of agricultural land receiving these materials should focus on P added and liming properties. Author Keywords: Alkaline treated biosolids, Nitrogen, Phosphorus, Soil fertility
Emotional Intelligence and Bullying Victimization
Previous research has found that bullying and victimization is related to poor socioemotional competencies. The present study examined the relationship between emotional intelligence (EI) and bullying and victimization in a large community-based sample of adolescents. Specifically, we explored the EI of bullies, victims, bully-victims, and those uninvolved. We also examined whether the relationship between EI and types of bullying and victimization activities were consistent across age and gender. We found that stress management and interpersonal skills are important EI dimensions to predicting both bullying and victimization. Moreover, intrapersonal skills were predictive of boys’ bullying behaviours and adaptability was the strongest EI dimension in bullies and victims. Age did not contribute much to the overall prediction of bullying and victimization in either gender. Results are discussed in terms of future implications regarding anti-bullying interventions. Author Keywords: Adolescents, age, Bullying, Emotional Intelligence, gender, social emotional competencies
Relationships between bird densities and distance to mines in Northern Canada
Increased mining activity in the Canadian Arctic has resulted in significant changes to the environment that may be influencing some tundra-nesting bird populations. In this thesis I examine the direct and indirect effects of mining on birds nesting in the Canadian Arctic. I first perform a literature review of the effects that mining in the Arctic has on northern environments and wildlife and outline several ways in which mines affect Arctic-breeding birds. By using the Program for Regional and International Shorebird Monitoring (PRISM) Arctic plot-based bird survey data from across the Canadian Arctic, collected from 1995 to 2018, I identify the effects of distance to mining operations on the occupancy patterns of Arctic-breeding bird species. Six species’ densities were significantly impacted by mine proximity (Canada/Cackling Goose, Long-tailed Duck, Long-tailed Jaeger, Pectoral Sandpiper, Savannah Sparrow, and Rock Ptarmigan) across five major mine sites. Each species has its own unique relationship to distance from mining activity. Author Keywords: Bird populations, Canadian Arctic, Mining, Mining activities, PRISM, Tundra-nesting birds
Biosynthesis and impact of cytokinins on growth of the oyster mushroom, Pleurotus ostreatus
The oyster mushroom, Pleurotus ostreatus, is one of the most widely cultivated edible basidiomycetes. It has gained increased attention for its economic, environmental, and medicinal properties. While a lot is known about cytokinins (CKs) and their actions at the molecular and cellular levels in plants, much less is known about the function of CKs in other kingdoms. Cytokinins, which have been detected in several fungal species, play a role in pathogenic attack against plants or during plant growth promotion by plant beneficial microbes; however, the role of CKs in fungal physiology, separate from plant associations remains largely unknown. This thesis focuses on the occurrence of fungal-derived CKs in P. ostreatus when grown in vitro as submerged or aerial mycelium. Cytokinin profiling by UHPLC-HRMS/MS revealed that P. ostreatus produces CKs and that the tRNA degradation pathway is the main source of these molecules. CK dynamics within fungal growth supported previous evidence, which suggested that tRNA degradation products have a role in the physiological development of fungi for which CKs act as fungal growth regulators. A second component of the thesis demonstrated that P. ostreatus responds to exogenous applications of aromatic and isoprenoid CKs and their effects were dependent on the dose and CK type. N6-Benzyladenine (BAP), Kinetin (KIN), N6-isopentenyladenine (iP), and trans-zeatin (tZ) bioassays revealed hormone-type responses (hormesis: biphasic response). At low doses, mycelium growth could be stimulated, whereas, at high doses only inhibitory effects were observed. This stimulation/inhibition was observed whether the measured response was an increase/decrease of aerial mycelium colony diameter, biomass accumulation or a change in mycelium morphology as compared to the controls. Results indicated there is potential to alter mycelium growth and development of P. ostreatus; thus, CKs may play the role of a “mycohormone” and may be specifically helpful for medicinal fungi by increasing growth and efficiency to produce many biologically active substances with valuable medical and environmental applications. Author Keywords: cytokinins, fungal-derived CKs, hormesis, mycelium, mycohormone, Pleurotus ostreatus
significance of topographically-focused groundwater recharge during winter and spring on the Oak Ridges Moraine, southern Ontario
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous work has emphasized the importance of depression-focused recharge (DFR) for the timing and location of groundwater recharge to the ORM’s aquifers. However, the significance of DFR has not been empirically demonstrated and the relative control of land cover, topography, and surficial geology on DFR is unclear. The potential for DFR was examined for topographic depressions under forested and open, agricultural land covers with similar soils and surficial geology. Recharge (R) was estimated at the crest and base of each depression during the 2012-13 and 2013-14 winter-spring periods (~December – May) using both a 1-dimensional water balance approach and a surface-applied Br- tracer. At each depression, air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface-water levels were monitored and soil properties (texture, bulk density, porosity, and hydraulic conductivity) were measured. Both forested and agricultural land covers experienced soil freezing; however, concrete frost did not develop in the more porous and conductive forest soils. Concrete frost in agricultural depressions resulted in overland flow, episodic ponding and drainage of rain-on-snow and snowmelt inputs. Recharge was an order-of-magnitude greater at the base of open depressions. Observations of ponding (as evidence of DFR) were made at an additional 14 depressions with varying land cover, geometry, and soil type during the 2014 snowmelt period and measurements of pond depth, pond volume, land cover (i.e., percentage of agricultural vs. forested cover), depression geometry (i.e., contributing area, average slope, relief ratio) and soil texture were made. Ponding was restricted to depressions under mostly agricultural cover and a positive, non-linear relationship between pond volume and average slope was shown for sites with similar land cover and soil texture, but neither pond depth nor volume were related to any other depression characteristics. Results suggest that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention. Author Keywords: Concrete frost, Depression-focused groundwater recharge, Oak Ridges Moraine, Ponding, Topographic depressions, Water balance
Genetic diversity and differentiation of Ontario’s recolonizing fishers (Pekania pennanti)
Fishers (Pekania pennanti) were extirpated from many parts of Ontario in the early 20th century, but as of the early 2000s the species had recolonized most of its historical range. While the primary population genetic structure of fishers in central and eastern Ontario has not changed drastically over the past ten years, we did find evidence of increased secondary structure and a reduction in northward movement from southeastern Ontario, a site of recent immigration from the Adirondacks in northern New York. This may be indicative of a reduction in density and thus in density-dependent migration, or it may be a consequence of the population reaching equilibrium following a period of rapid expansion associated with recolonization. We also observed no variation within central and eastern Ontario at 14 of 15 candidate functional loci we screened, suggesting possible directional or stabilizing selection and a lack of adaptive potential. Author Keywords: fisher, functional genes, Ontario, Pekania pennanti, population genetics, recolonization
Frog Virus 3
Understanding the maintenance and spread of invasive diseases is critical in evaluating threats to biodiversity and how to best minimize their impact, which can by done by monitoring disease occurrences across time and space. I sought to apply existing and upcoming molecular tools to assess fluctuations in both presence and strain variation of frog virus 3 (FV3), a species of Ranavirus, across Canadian waterbodies. I explored the temporal patterns and spatial distribution of ranavirus presence across multiple months and seasons using environmental DNA techniques. Results indicate that ranavirus was present in approximately 72.5% of waterbodies sampled on a fine geographical scale (<10km between sites, 7,150 km2), with higher detection rates in later summer months than earlier. I then explored the sequence variability at the major capsid protein gene (MCP) and putative virulence gene (vIF-2α) of FV3 samples from Ontario, Alberta, and the Northwest Territories, with the premise of understanding pathogen movement across the landscape. However, a lack of genetic diversity was found across regions, likely due to a lack of informative variation at the chosen genetic markers or lack of mutation. Instead, I found a novel FV3-like ranavirus and evidence for a recombinant between FV3 and a ranavirus of another lineage. This thesis provides a deeper understanding into the spatio-temporal distribution of FV3, with an idea of how widespread and threatening ranaviruses are to amphibian diversity. Keywords: ranavirus, frog virus 3, amphibians, environmental DNA, phylogenetics, wildlife disease, disease surveillance, major capsid protein, vIF-2α Author Keywords: amphibians, environmental DNA, frog virus 3, phylogenetics, ranavirus, wildlife disease
Carbon and Nitrogen Isotope Changes in Streams along an Agricultural Gradient
Nitrogen is a major constituent of agricultural fertilizers, and nitrogen inputs to stream water via runoff and groundwater lead to a variety of negative environmental impacts. In order to quantify the movement of nitrogen through aquatic food webs, fourteen streams with varying land uses across South-Central Ontario were sampled for two species of fish, freshwater mussels, and water for measurement of isotope ratios of δ15N and δ13C. I found that nitrogen isotopes in fish, water, and mussels were related to the percentage of riparian monoculture, and that carbon isotopes were unrelated to monoculture. Though all species were enriched as monoculture increased, the rate of δ15N enrichment as monoculture increased did not vary between species. This study has improved our understanding of how monoculture affects nutrient enrichment in stream food webs, and assesses the validity of using nitrogen isotopes to measure trophic positions of aquatic organisms across an environmental gradient. Author Keywords: agriculture, fish, food webs, nitrogen, stable isotopes, streams
Functional Investigation of A Ustilago maydis Xylose Metabolism Gene and its Antisense Transcripts
Ustilago maydis is a biotrophic fungal plant pathogen that causes ‘common smut of corn’ disease. During infection, U. maydis develops a metabolic dependency on its host, relying on uptake of the carbon molecules provided within Zea mays tissues. The research presented indicated a requirement for metabolism of the pentose sugar D-xylose through functional investigation of a U. maydis xylitol dehydrogenase (uxm1), an enzyme involved in the bioconversion of D-xylose. This work is the first to outline the importance of pentose metabolism during biotrophic plant pathogenesis, as U. maydis haploid cells lacking this gene were impaired in their ability to cause disease and grow on medium containing only D-xylose. This thesis also explored the possibility that expression of this carbon-related gene is controlled by antisense RNAs (asRNAs), endogenous molecules with complementarity to mRNAs. Previous investigation of U. maydis asRNAs identified some that are exclusively expressed in the dormant teliospore, suggesting they have a functional role within this cell-type. A subset of these asRNAs at the uxm1 locus were investigated, with the purpose of identifying the mechanism(s) by which they influence U. maydis pathogenesis. This investigation involved the creation and functional analysis of a series of U. maydis deletion and expression strains. Together, these findings provided additional knowledge regarding the possible functions of U. maydis asRNAs, and their involvement in controlling important cellular processes, such as carbon metabolism and pathogenesis. Author Keywords: antisense transcripts, fungal carbon metabolism, non-coding RNAs, pathogenesis, Ustilago maydis, xylitol dehydrogenase
Endocannabinoid Treatment for the Behavioural and Histopathological Alterations of Epilepsy
Epilepsy is associated with a variety of cognitive, emotional, and pain-related symptoms, such as impaired memory and learning, increased risk of anxiety and depression, and increased pain sensitivity. Unfortunately, these symptoms are generally untreated with typical pharmacological interventions, which tend to target seizure activity (i.e., ictogenesis) and not the subsequent histopathological and behavioural alterations resulting from epilepsy (i.e., epileptogenesis). Evidence has demonstrated that targeting the endocannabinoid system can alleviate seizure symptoms as well as cognitive, emotional, and pain-related impairments independent of epilepsy. However, research examining the use of endocannabinoid-based treatment for these behavioural symptoms when they are associated with epilepsy is sparse. In the following thesis, two animal models of epilepsy, several behavioural assessments, and immunohistochemical techniques are utilized to assess the effectiveness of endocannabinoid-based treatment for epilepsy’s interictal symptoms. The findings expand our knowledge and offer encouraging evidence for the usefulness of endocannabinoid-based treatment as an epileptogenesis-targeting pharmacological intervention. Author Keywords: animal models, endocannabinoid system, histopathological alterations, interictal symptoms, temporal lobe epilepsy, treatment
Trace Metal Geochemistry in Peatlands
Peatlands can be found widely across all latitudes and play a significant role in global cycles within the earth’s biosphere. The anoxic conditions in peatlands promotes the accumulation of organic matter through decreased rates of decomposition and the storage of certain elements, which have received contaminant loading over the course of human existence, with significant increases occurring during the period of industrialization. We assessed global patterns of metal enrichment in peatlands in 439 cores distributed across 5 continents and 21 countries and measured 35 elements by depth increments and by peatland type. Global patterns in enrichment factors (EF’s) were determined for all metals with the majority of metals being found to have a median EF < 2 indicating relatively minor enrichment. Principal component analysis indicated EF’s of 6 metals (Cd, Co, Cu, Ni, Pb, and Zn), 2 metalloids (As and Sb) and Se in the upper peat horizon had similar spatial patterns among peatlands and these elements had generally the highest EF’s with many cores exceeding EF >10 and some having EF values >100. Significant differences in EF’s were found for these 9 “pollution” elements by peatland type and to a greater extent by geographic region, with higher EF values typically occurring in Europe and North America. Enrichment factors for most elements exhibited weak but significant positive correlations with modelled [1850 – present] S deposition. Estimated pools for the “pollution metals” within the 0 - 40 cm depth varied considerably, with median global pools in peat ranging from 12.9 mg m-2 (Sb) to 439 mg m-2 (Zn) for these 9 metals. Climate changes presents a significant risk to global peatland geochemistry due to expected changes in hydrologic regimes, resulting in potentially increased metal mobility though drought-induced peatland acidification, with historic areas previously impacted by industrial activities presenting the greatest risk of metal release to downstream receiving environments. Using a case study, we examined the impact of simulated 30-day drought on pore water chemistry at six sites in a peatland complex in Elliot Lake Ontario that were historically impacted by uranium (U) mining activities. All sites responded similarly to simulated drought with pore water pH significantly declining. The decline in pore water pH was likely due to increasing sulphate (SO42-) concentrations, which accompanied large increases in Al, Ni, Cu, Pb, Zn, and U. Dissolved organic carbon (DOC) increased, which may further enhance Al, Cu, and U mobility as these metals are strongly complexed by organic acids. Metal partitioning (Kd) values could be significantly predicted by pH and DOC although the strength of the relationship varied considerably among sites. Multiple linear regression and the inclusion of SO4-2 improved predictions, indicating that declines in pH as a result of SO4-2 and H+ production primarily governs metals and U partitioning in peatland soils. The results from both studies show that metal enrichment in global peatlands is highly variable, with northern peatlands in industrialized areas presenting the greatest risk of metal release to downstream surface waters based on expected hydrologic impacts from climate change due to historical and on-going metal and S deposition. Author Keywords: Acidification, Climate Change, Drought, Enrichment Factors, Global, Peatlands

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Master of Science

Filter Results

Date

1973 - 2033
(decades)
Specify date range: Show
Format: 2023/10/02