Graduate Theses & Dissertations


Molecular Dynamics Simulations of Aqueous and Confined Systems Relevant to the Supercritical Water Cooled Nuclear Reactor
Supercritical water (SCW) is the intended heat transfer fluid and potential neutron moderator in the proposed GEN-IV Supercritical Water Cooled Reactor (SCWR). The oxidative environment poses challenges in choosing appropriate design materials, and the behaviour of SCW within crevices of the passivation layer is needed for developing a corrosion control strategy to minimize corrosion. Molecular Dynamics simulations have been employed to obtain diffusion coefficients, coordination number and surface density characteristics, of water and chloride in nanometer-spaced iron hydroxide surfaces. Diffusion models for hydrazine are evaluated along with hydration data. Results demonstrate that water is more likely to accumulate on the surface at low density conditions. The effect of confinement on the water structure diminishes as the gap size increases. The diffusion coefficient of chloride decreases with larger surface spacing. Clustering of water at the surface implies that the SCWR will be most susceptible to pitting corrosion and stress corrosion cracking. Author Keywords: Confinement, Diffusion, Hydration, MD Simulations, Supercritcal Water
Money for Nothing
The strong relationship between poverty and poor health has been well-established for millennia; however, the mechanisms through which this relationship manifests are only recently becoming understood. Perceptions of relative wealth and status, chronic stress, and immunodeficiencies are implicated in recent research studying the social determinants of health. The purpose of the current study is to access the detailed and contextualized perceptions of these relationships and contribute evidence-based policy suggestions to improve the health of the Canadian population. A qualitative approach was employed to provide a unique perspective in addressing the concerns identified within the literature, and fifteen semi-structured interviews with relevant experts were conducted and evaluated using a Content Analysis. The results of the current study suggested a consensus among the participants with regards to the income-related social factors which determine poor health outcomes. A basic income was also perceived to moderate these mechanisms to a certain degree, but was not considered the most effective policy solution. Emulating the progressive tax policies of more economically equal countries was the preferred approach to addressing the issues of poverty and poor health in Canada (though a basic income was not excluded as a potential subsection of these policies). A lack of political will was perceived to be one of the primary obstacles preventing such policies from coming into practice, and it was the conclusion of this paper that virtuous and knowledgeable political leaders are a necessity in the successful pursuit of improving the health of the Canadian people. Author Keywords:
Monitoring and fate of selected tire-derived organic contaminants
Road runoff is a vector for the transport of potentially toxic chemicals into receiving waters. In this study, selected tire-derived chemicals were monitored in surface waters of rivers adjacent to two high traffic highways in the Greater Toronto Area in Ontario, Canada. Composite samples were collected from the Don River and Highland Creek in the GTA during 5 hydrological events that occurred in the period between early October 2019 and late March 2020, as well as an event in August 2020. Grab samples were collected from these rivers during a period of low flow in August 2020, as well as during a storm event in July of 2020. Analysis was performed using ultra-high pressure liquid chromatography with high resolution mass spectrometric detection (UHPLC-HRMS). Hexamethoxymethylmelamine (HMMM), a cross-linker of tire material, was detected at elevated concentrations (> 1 µg/L) during rain events in the fall and winter of 2019-20 and during a period of rapid snow melt in early March of 2020. These samples were also analyzed for the tire additive, 6PPD, and its oxidation by-product, 6PPD-quinone, as well as 1,3-diphenylguanidine (DPG). In many samples collected from the Don River and Highland Creek during storm events, the estimated concentrations of 6PPD-quinone exceeded the reported LC50 of 0.8 µg/L for Coho salmon exposed to this compound. Temporal samples collected at 3-hour intervals throughout rain event the October 2020 showed that there was a delay of several hours after the start of the event before these compounds reached their peak concentrations. In addition, 26 candidate transformation products and precursor compounds of HMMM were monitored; 15 of these compounds were detected in surface waters in the GTA. The maximum total concentration of this class of methoxymethylmelamine compounds in surface water samples was estimated to be 18 µg/L. There is limited knowledge about the properties of HMMM, its precursor contaminants, and its transformation compounds, as well as their fate in the environment. COSMO-RS solvation theory was used to estimate the physico-chemical properties of HMMM and its derivatives. Using the estimated values for these properties (e.g., solubility, vapour pressure, log Kow) as inputs to the Equilibrium Criterion (EQC) fugacity-based multimedia model, the compounds were predicted to readily partition into aqueous media, with mobility in water increasing with the extent of loss of methoxymethyl groups from HMMM. Overall, this study contributes to the growing literature indicating that potentially toxic tire-wear compounds are transported via road runoff into urban surface waters. In addition, this study provides insight into the environmental behaviour of HMMM and its transformation products. Author Keywords: 6PPD-quinone, COSMOtherm, Fugacity, Hexamethoxymethylmelamine, Road runoff, Tire wear
Moss Biomonitoring of Trace Element Deposition in Northwestern British Columbia, Canada
Atmospheric pollutant deposition poses a risk to ecosystem health; therefore, monitoring the spatial and temporal trends of deposition is integral to environmental sustainability. Although moss biomonitoring is a common method to monitor various pollutants in Europe, offering a cost-effective approach compared to traditional methods of monitoring, it is rarely used in Canada. The focus of this study was a spatial assessment of trace element deposition across a region with a known large-point source of emissions using the moss biomonitoring method. Moss tissues presented strong correlations with modelled deposition in the region, suggesting mosses are a valuable biomonitoring tool of trace element deposition, especially in regions dominated by large-point emission sources. Additionally, a moss species endemic to Canada was compared to commonly used moss species with results indicating this species (Isothecium stoloniferum) can be used reliably as a biomonitor. Moss biomonitoring is recommended as a compliment to fill in spatial gaps in current monitoring networks across the country. Author Keywords: biomonitoring, bryophytes, Hylocomium splendens, moss, Pleurozium schreberi, trace elements
Moving North
Since their successful reintroduction, the eastern wild turkey (Meleagris gallopavo silvestris) has expanded its range north. Due to different and potentially more severe limiting factors, management approaches generalized from studies within the historical range may not be appropriate to apply to northern populations. To better understand northern wild turkey ecology, GPS and VHF transmitters were used to track habitat selection and survival of female turkeys at the species northern range edge in Ontario, Canada. These northern turkeys exhibited larger seasonal home range sizes relative to those in their historical range, and selected deciduous forest and pasture and fields within the study area. Supplemental food was also selected by turkeys when choosing autumn and winter ranges. The northern turkeys also suffered a low annual survival rate, and high mortality from predation. These findings underscore the challenges of maintaining turkey populations in northern environments, and will help inform management strategies. Author Keywords: Eastern Wild Turkey, Euclidean distance analysis, Habitat selection, Meleagris gallopavo silvestris, Northern range edge, Survival
Mutation of the B10 Tyrosine and E11 Leucine in Giardia intestinalis Flavohemoglobin
The flavohemoglobin in Giardia intestinalis (gFlHb) is the only known protozoan member of a protein class typically associated with detoxifying nitric oxide (by oxidation to nitrate) in bacteria and yeast. Mutants of the B10 tyrosine (Y30F) and E11 leucine (L58A), conserved residues thought to influence ligand binding, were expressed and studied using Resonance Raman (RR) spectroscopy. In the wild type protein, RR conducted using a carbon monoxide probe detects two distinct Fe-CO stretches associated with two different active site configurations. In the open configuration, CO does not interact with any polar side chains, while in the closed configuration, CO strongly interacts with one or more distal residues. Analysis of the Y30F mutant provided direct evidence of this tyrosine’s role in ligand stabilization, as it had only a single Fe-CO stretching mode. This stretching mode was higher in energy than the open conformer of the wild type, indicating a residual hydrogen bonding interaction, likely provided by the E7 glutamine (Q54). In contrast the L58A mutant had no effect on the configurational nature of the enzyme. This was unexpected, as the side chain of L58 sits atop the heme and is thought to regulate the access of distal residues to the heme-bound ligand. The similar spectroscopic properties of wild type and L58A suggest that any such regulation would involve rapid conformational dynamics within the heme pocket. Author Keywords: B10 Tyrosine, Catalytic Globin, E11 Leucine, Flavohemoglobin, gFlHb, Giardia intestinalis
NMR and EPR Studies on Cytochrome b5 Isotypes of Giardia intestinalis
The amitochondrial protozoan, Giardia intestinalis, encodes four members of the cytochrome b5 (CYTB5) family of heme proteins of unknown function. While homology models can predict the likely fold of these proteins, supporting experimental evidence is lacking. The small size of the cytochromes (~16 kDa) makes them attractive targets for structural analysis by Electron Paramagnetic Resonance spectroscopy (EPR) and Nuclear Magnetic Resonance spectroscopy (NMR). EPR measurements are particularly useful in defining the geometry of the coordination environment of the heme iron; such measurements indicated that the planar imidazole rings of the invariant histidine axial ligands are nearly perpendicular to each other, rather than in the coplanar orientation observed within mammalian CYTB5s. This may be due to geometrical constraints imposed by a one-residue shorter spacing between the ligand pair in the Giardia cytochromes b5 (gCYTB5s). Following optimization of sample and instrument conditions for NMR experiments, a comparison of the 1D 1H-NMR spectra of gCYTB5 isotype I to those of three of its heme-pocket mutants (Tyr51→Phe, Tyr61→F, and Cys84→Ala) were used to tentatively assign the heme methyl and vinyl protons. Mutant Tyr61→F had the greatest effect on the wild-type spectrum due to maximum through-space contacts with the heme macrocycle and its proximity to the His63 axial ligand. These experiments are a prelude to further NMR experiments that can lead to solving the complete structures of these proteins. Author Keywords: cytochrome b5, heme b, mutant protein, paramagnetic iron, resonant spectroscopy, sequence homology
Natural antisense transcripts to nucleus-encoded mitochondrial genes are linked to Ustilago maydis teliospore dormancy
Ustilago maydis is a basidiomycete smut fungus and the causal agent of common smut of corn. Disease progression and fungal development in this pathogen occur in planta, terminating in the production of dormant teliospores. Dormant spores of many fungi are characterized by reduced metabolic activity, which is restored during spore germination. The transition out of dormancy requires the rapid translation of stored mRNAs, which may be stabilized through natural antisense transcript (NAT)-mediated mechanisms. Transcript analysis revealed that as-ssm1, a NAT to the mitochondrial seryl-tRNA synthetase (ssm1), is detected in the dormant teliospore and absent in haploid cells. Disruption of ssm1 leads to cell lysis, indicating it is essential for cellular viability. Presented data supports the hypothesis that as-ssm1 has a role in facilitating teliospore dormancy through stabilizing ssm1 transcripts, which reduces mitochondrial function. as-ssm1 expression during in planta development begins 10 days post-infection, coinciding with the first appearance of dormant teliospores. To assess the impact of as-ssm1 expression on cell division, virulence and mitochondrial function, as-ssm1 was ectopically expressed in haploid cells, leading to increased ssm1 transcript levels and the formation of double-stranded RNA. These expression mutants are characterized by attenuated growth rate, virulence, mitochondrial membrane potential and oxygen consumption. Together, these findings support a role for NATs in moderating mitochondrial function during the onset of teliospore dormancy. Author Keywords: Dormant teliospore, Mitochondria, mRNA stability, Natural antisense transcripts, Non-coding RNA, Ustilago maydis
Near-Hand Effects and Recruitment of Visual-Tactile Bimodal Cells
Near-hand benefits are seen when individuals are able to process targets more quickly, accurately, and with greater precision when a hand is placed near, rather than far from a target. One possibility is that near-hand stimuli recruit visual-tactile bimodal cells. Research reports that placing a hand near a target delayed immediate saccade onset and speeded delayed saccade onset. Study 1 examined saccade onset to targets appearing near a real hand, a realistic fake hand, or a non-hand visual cue. Immediate saccades were facilitated and delayed saccades were slowed with a real hand in the display, in comparison to a fake hand and no-hand. To establish the link between near-hand effects and bimodal cells, Study 2 used repetitive transcranial magnetic stimulation (rTMS) to depress cortical activity in PMd. RTMS did not induce a reversal of interference induced by near-hand, congruent targets. However, a reversal of the hand effect was found in the stimulation group; a real hand in the display may delay immediate saccades and improve delayed saccades post-stimulation. This finding may double dissociate the effect of the real hand from the fake hand and may be inconsistent with the hypothesis that the hand is attracting attention. Author Keywords: multisensory integration, near-hand effects, PMd, premotor cortex, rTMS, visual-tactile bimodal neurons
Near-road assessment of traffic related air pollutants along a major highway in Southern Ontario
The spatial and temporal variation in atmospheric nitrogen dioxide (NO2), ammonia (NH3), and 17 elements (V, Cr, Fe, Ni, Cu, Zn, As, Cd, Pb, Mg, Al, Ca, Co, Se, Sb, Mn, and Na) were measured at 40 road side locations along a ~250 km traffic density gradient of 40,000–400,000 vehicles on the King’s Highway 401, in Ontario, Canada. Elemental concentrations were measured over a year, using moss bags as passive samplers, for four quarterly three-month exposure periods (October 2015 – October 2016). Gaseous NO2 and NH3 concentrations were measured using Willem’s badge passive diffusive samplers for twelve one-week exposure periods (one per month: October 2015–October 2016). Dry deposition of nitrogen was estimated using the inferential method. There were significant linear relationships between NO2 and NH3 and average annual daily traffic (AADT) volumes across the study area; higher concentrations corresponded to higher volume traffic sites. Average NO2 concentrations at sites ranged from 23.5 to 73 μg/m3, with an annual average of 43.7 μg/m3. Ammonia ranged from 2.56 to 13.55 μg/m3, with an annual average of 6.44 μg/m3. There were significant quarterly variations in NO2, with concentrations peaking during the winter months. In contrast, NH3 showed no significant quarterly variation, but a slight peak occurred during the summer. Gaseous NO2 and NH3 were highly positively correlated (r = 0.63), suggesting a common emission source from traffic. Concentrations in exposed moss were determined by subtracting the total concentration of each metal in the exposed sample from the background concentration present in the moss. Relative accumulation factors (RAF) and contamination factors were also calculated to determine the anthropogenic influence on tissue concentrations in exposed moss. All metals showed elevated levels versus background concentrations, with all metals except Ni and Co showing considerable enrichment. The highest levels of contamination were from V, Cr, Fe, Zn, Cd, Sb, Pb and Na. Principal component analysis indicated 5 clear clusters of related elements, with PC1 accounting for 36.2% and PC2 accounting for 25.6% of the variance. Average annual daily traffic was significantly related to Cr, Fe, Cu, Sb, Mn, Al, and Na. Road side monitoring shows consistently higher concentrations than active monitoring sites located further from the edge of the road, indicating a need for increased road side monitoring in Ontario, Canada. Author Keywords:
Neonatal Environment Influences Behavioural and Physiological Reactivity to Stressors, and Mammary Gland Development in BALB/c Mice
Using rodent models, it is possible to study the behavioural and physiological outcomes of early life stress and the influences on normal mammary gland development and carcinogenic risk. Results demonstrate that the experience of three weeks of prolonged maternal separation (LMS; 4 hrs/day) increased the susceptibility of adult, but not pubertal, female BALB/c mice to engage in higher levels of depressive-related immobility behaviour and lower levels of active floating (a suggested adaptive coping behaviour) in the acute forced swim test, than offspring that experienced three weeks of brief separation (BMS; 15 min/day) events. Despite the increased immobility behaviour, adult LMS female offspring demonstrated lower basal corticosterone levels relative to BMS females. However, the experience of chronic early-life stress, regardless of the length, results in greater changes between non-stressed and stressed corticosterone levels (i.e. stressor reactivity) in adult females compared to their male counterparts. These changes were associated with decreased glucocorticoid receptor and coactivator-associated arginine methyltransferase 1 protein expression in mammary gland of female LMS mice at young adulthood, highlighting potential mechanisms underlying their heightened risk of mammary tumourigenesis. These data suggest that early life environments can induce behavioural and physiological alterations observed in adulthood, which may have an influence on the likelihood of malignancies developing in the breast. Author Keywords: coping, early life stress, mammary gland development, mother-infant interactions, steroid receptors, stressor reactivity
Nitrogen Retention of Terricolous Lichens in a Jack Pine Forest in Northern Alberta
The Athabasca Oil Sands in Alberta, Canada is one of the largest point sources emitters of NOx in Canada and there are concerns that elevated nitrogen (N) deposition will lead to widespread eutrophication impacts, including altered species composition, similar to what has occurred in several parts of Europe. Atmospheric deposition rates as high as 25 kg N ha-1 yr-1 have been measured close to the industrial center. The role of the forest floor in regulating these potential eutrophication effects was investigated following a 5-year enrichment study in which N was applied as NH4NO3 above the canopy of a jack pine (Pinus banksiana Lamb) stand in northern Alberta close to Fort McMurray at dosages ranging from 5 – 25 kg N ha-1 yr-1 in addition to background deposition of 2 kg N ha-1 yr-1. Chemical analysis of lichen mats revealed that apical (upper) lichen tissue N concentration increased with treatment, as did the necrotic tissue. When expressed as a pool, the fibric-humic (FH) material held the largest quantity of N across all treatments due to its relatively large mass. Soil net N mineralization and net nitrification rates did not differ among N inputs after five years of application. A 15N tracer applied to the forest floor showed that N is initially absorbed by the apical lichen, FH material, and the foliage of the vascular plant Vaccinium myrtilloides in particular. After 2 years, the FH 15N pool size was elevated and all other measured pools were depleted, indicating a slow transfer of N to the FH material. Applied 15N was not detectable in mineral soil. The microbial functional gene ammonia monooxygenase (amoA) was undetectable using PCR screening of mineral soil microbial communities in all treatments, and broad fungal/bacterial qPCR assays revealed a weak treatment effect on fungal/bacterial ratios in mineral soil. This work suggests that terricolous lichen mats, which form the majority of ground cover in upland jack pine systems, have a large capacity to effectively retain elevated N deposition via the formation of stable humus. Author Keywords: Biogeochemistry, Boreal Ecology, Lichen, Nitrogen Enrichment, Oil Sands


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Burness
  • (-) = Master of Science
  • (-) ≠ Freeland

Filter Results


1974 - 2024
Specify date range: Show
Format: 2024/03/02