Graduate Theses & Dissertations


Functional Investigation of A Ustilago maydis Xylose Metabolism Gene and its Antisense Transcripts
Ustilago maydis is a biotrophic fungal plant pathogen that causes ‘common smut of corn’ disease. During infection, U. maydis develops a metabolic dependency on its host, relying on uptake of the carbon molecules provided within Zea mays tissues. The research presented indicated a requirement for metabolism of the pentose sugar D-xylose through functional investigation of a U. maydis xylitol dehydrogenase (uxm1), an enzyme involved in the bioconversion of D-xylose. This work is the first to outline the importance of pentose metabolism during biotrophic plant pathogenesis, as U. maydis haploid cells lacking this gene were impaired in their ability to cause disease and grow on medium containing only D-xylose. This thesis also explored the possibility that expression of this carbon-related gene is controlled by antisense RNAs (asRNAs), endogenous molecules with complementarity to mRNAs. Previous investigation of U. maydis asRNAs identified some that are exclusively expressed in the dormant teliospore, suggesting they have a functional role within this cell-type. A subset of these asRNAs at the uxm1 locus were investigated, with the purpose of identifying the mechanism(s) by which they influence U. maydis pathogenesis. This investigation involved the creation and functional analysis of a series of U. maydis deletion and expression strains. Together, these findings provided additional knowledge regarding the possible functions of U. maydis asRNAs, and their involvement in controlling important cellular processes, such as carbon metabolism and pathogenesis. Author Keywords: antisense transcripts, fungal carbon metabolism, non-coding RNAs, pathogenesis, Ustilago maydis, xylitol dehydrogenase
Eco-evolutionary Dynamics in a Commercially Exploited Freshwater Fishery
Fisheries assessment and management approaches have historically focused on individual species over relatively short timeframes. These approaches are being improved upon by considering the potential effects of both broader ecological and evolutionary processes. However, only recently has the question been raised of how ecological and evolutionary processes might interact to further influence fisheries yield and sustainability. My dissertation addresses this gap in our knowledge by investigating the role of eco-evolutionary dynamics in a commercially important lake whitefish fishery in the Laurentian Great Lakes, a system that has undergone substantial ecosystem change. First, I link the timing of large-scale ecological change associated with a species invasion with shifts in key density-dependent relationships that likely reflect declines in the population carrying capacity using a model selection approach. Then, using an individual-based model developed for lake whitefish in the southern main basin of Lake Huron, I demonstrate how ecosystem changes that lower growth and recruitment potential are predicted to reduce population productivity and sustainable harvest rates through demographic and plastic mechanisms. By further incorporating an evolutionary component within an eco-genetic model, I show that ecological conditions also affect evolutionary responses in maturation to harvest by altering selective pressures. Finally, using the same eco-genetic model, I provide a much-needed validation of the robustness of the probabilistic maturation reaction norm (PMRN) approach, an approach that is widely used to assess maturation and infer its evolution, to ecological and evolutionary processes experienced by exploited stocks in the wild. These findings together highlight the important role that ecological conditions play, not only in determining fishery yield and sustainability, but also in shaping evolutionary responses to harvest. Future studies evaluating the relative effects of ecological and evolutionary change and how these processes interact in harvested populations, especially with respect to freshwater versus marine ecosystems, could be especially valuable. Author Keywords: Coregonus clupeaformis, density-dependent growth, fisheries-induced evolution, individual-based eco-genetic model, Lake Huron, stock-recruitment
Trace Metal Geochemistry in Peatlands
Peatlands can be found widely across all latitudes and play a significant role in global cycles within the earth’s biosphere. The anoxic conditions in peatlands promotes the accumulation of organic matter through decreased rates of decomposition and the storage of certain elements, which have received contaminant loading over the course of human existence, with significant increases occurring during the period of industrialization. We assessed global patterns of metal enrichment in peatlands in 439 cores distributed across 5 continents and 21 countries and measured 35 elements by depth increments and by peatland type. Global patterns in enrichment factors (EF’s) were determined for all metals with the majority of metals being found to have a median EF < 2 indicating relatively minor enrichment. Principal component analysis indicated EF’s of 6 metals (Cd, Co, Cu, Ni, Pb, and Zn), 2 metalloids (As and Sb) and Se in the upper peat horizon had similar spatial patterns among peatlands and these elements had generally the highest EF’s with many cores exceeding EF >10 and some having EF values >100. Significant differences in EF’s were found for these 9 “pollution” elements by peatland type and to a greater extent by geographic region, with higher EF values typically occurring in Europe and North America. Enrichment factors for most elements exhibited weak but significant positive correlations with modelled [1850 – present] S deposition. Estimated pools for the “pollution metals” within the 0 - 40 cm depth varied considerably, with median global pools in peat ranging from 12.9 mg m-2 (Sb) to 439 mg m-2 (Zn) for these 9 metals. Climate changes presents a significant risk to global peatland geochemistry due to expected changes in hydrologic regimes, resulting in potentially increased metal mobility though drought-induced peatland acidification, with historic areas previously impacted by industrial activities presenting the greatest risk of metal release to downstream receiving environments. Using a case study, we examined the impact of simulated 30-day drought on pore water chemistry at six sites in a peatland complex in Elliot Lake Ontario that were historically impacted by uranium (U) mining activities. All sites responded similarly to simulated drought with pore water pH significantly declining. The decline in pore water pH was likely due to increasing sulphate (SO42-) concentrations, which accompanied large increases in Al, Ni, Cu, Pb, Zn, and U. Dissolved organic carbon (DOC) increased, which may further enhance Al, Cu, and U mobility as these metals are strongly complexed by organic acids. Metal partitioning (Kd) values could be significantly predicted by pH and DOC although the strength of the relationship varied considerably among sites. Multiple linear regression and the inclusion of SO4-2 improved predictions, indicating that declines in pH as a result of SO4-2 and H+ production primarily governs metals and U partitioning in peatland soils. The results from both studies show that metal enrichment in global peatlands is highly variable, with northern peatlands in industrialized areas presenting the greatest risk of metal release to downstream surface waters based on expected hydrologic impacts from climate change due to historical and on-going metal and S deposition. Author Keywords: Acidification, Climate Change, Drought, Enrichment Factors, Global, Peatlands
Seasonal variation in nutrient and particulate inputs and outputs at an urban stormwater pond in Peterborough, Ontario
Stormwater ponds (SWPs) are a common feature in new urban developments where they are designed to minimize runoff peaks from impervious surfaces and retain particulate matter. As a consequence, SWPs can be efficient at retaining particle-bound nutrients, but may be less efficient at retaining nutrients that are present primarily in the dissolved form, like nitrogen (N). However, the forms of nutrients (e.g. particulate vs. dissolved) likely differ with hydrologic and seasonal conditions and few studies have examined year-round differences in nutrient forms and concentrations at urban SWPs. In order to contrast total suspended solids (TSS), phosphorus (P) and nitrogen (N) levels between low and high flow conditions, sampling was conducted at an urban SWP in Peterborough, ON between November 2012 and October 2013. Only an increase in TSS levels at the outflow between low and high flow conditions was observed, as well as a decrease in TSS levels at the outflow compared to Inflow 1 under low flow conditions. Nitrate-N (NO3-N) was the dominant form of N entering the pond under all flow conditions, whereas the fraction of total-P (TP) that was particulate increased under high flow conditions. Nevertheless, the dissolved fraction of TP was consistently high in these urban inlets. Only NO3-N was significantly greater in the inflows than outflow and only under low flow conditions. Increases in the proportions of organic-N and ammonium-N in the outlet suggest that biological processing is important for N retention. Author Keywords: nitrogen, Ontario, phosphorus, stormwater ponds, total suspended solids
Mixed methods approaches in marine mammal science
This thesis explored the contribution of mixed methods approaches to marine mammal science through the use of concurrent and sequential designs to study distribution and feeding ecology of bowhead whales (Balaena mysticetus) in the Arctic region of Nunavik, Quebec, Canada. The study combines Inuit knowledge (IK), collected through semi-directed interviews with Inuit harvesters, and analyses of stable isotopes and trace elements (SI/TE) in baleen plates. A systematic literature review found that mixed methods are increasingly used in marine mammal ecology studies in remote locations, yet are still relatively rare and face a number of challenges. Both IK and SI/TE, indicated that bowhead whales have a seasonal pattern in their distribution and feeding ecology. They are most commonly present in productive nearshore areas in summertime, feeding in areas of great prey diversity, and moving to offshore areas in winter to fast. Mixed methods approaches used in this case study enabled the collection of complementary knowledge about bowhead whale ecology important for local management in a changing climate. This study also shows the value of mixed methods approaches for future marine mammal studies in Nunavik and elsewhere. Author Keywords: Arctic, bowhead whale, distribution, feeding ecology, mixed methods, traditional ecological knowledge
Carbon Exchange along a Natural Gradient of Deciduous Shrub Coverage in the Low-Arctic
Arctic terrestrial ecosystems have experienced substantial structural and compositional changes in response to warming climate in recent decades, especially the expansion of shrub species in Arctic tundra. Climatic and vegetation changes could feedback to the global climate by changing the carbon balance of Arctic tundra. The objective of this thesis was to investigate the influence of increased shrub coverage on carbon exchange processes between atmosphere and the Arctic tundra ecosystem. In this study a space-for-time substitution was used, referred to as a shrub expansion “chronosequence”, with three sites along a natural gradient of deciduous shrub coverage in the Canadian low Arctic. Leaf-level photosynthetic capacity (Amax) of dominating birch shrub Betula glandulosa (Michx.) was significantly higher (P<0.05) at the site where shrubs were more abundant and taller than at the other sites. For all sites, mean Amax in 2014 was significantly lower than in 2013, in part potentially due to differences in precipitation distribution. Bulk soil respiration (RS) rate was significantly higher (P<0.05) at the site with more shrubs compared with the other sites. The differences in RS across sites appeared to be driven by differences in soil physiochemical properties, such as soil nitrogen and soil bulk density rather than soil microclimate factors (e.g. soil temperature, moisture). The three sites were either annual CO2 sources (NEP<0) to the atmosphere or CO2 neutral, with strongest annual CO2 sources (-44.1±7.0 g C m-2) at the site with most shrubs. Overall this study suggests that shrubs tundra carbon balance will change with shrub expansion and that shrub ecosystems in the Arctic currently act as annual carbon sources or neutral to the atmospheric CO2 and further shrub expansion might strengthen the CO2 emissions, causing a positive feedback to the warming climate. Author Keywords: arctic tundra, carbon exchange, climate change, photosynthetic capacity, shrub expansion, soil respiration
Chemical characterization of dissolved organic matter in relation with hydrography in the Arctic Ocean
In this thesis, water mass distribution of dissolved organic matter (DOM) characteristics (i.e. molecular weight, fluorescent components, thiols and humic substances concentration) was observed in the Arctic Ocean. For the first time, DOM molecular weight (MW) in Beaufort Sea was assessed using asymmetrical flow field-flow fractionation, as well as the first monitoring of thiols and humic substances (HS) using cathodic stripping voltammetry (CSV) in the Arctic Ocean. Based on fluorescence property, DOM characterization was carried out using parallel factor analysis – excitation-emission matrices. Pacific winter waters in the Canada Basin showed higher MW DOM associated with higher fluorescence intensity. High HS was associated with the Arctic outflow waters in top 300 m of the Canadian Arctic Archipelago. Interestingly, maximum thiol concentration was associated with the subsurface chlorophyll-a maximum at most sites, but not universal along the study area. Comparable distributions of CSV-based HS and humic-like fluorescent components suggest similar sources/ processes in the Arctic Ocean. The findings in this thesis suggested DOM characteristics could be used as fingerprints in tracing water masses in the Arctic Ocean. Author Keywords: Asymmetrical flow field-flow fractionation, Cathodic stripping voltammetry, DOM, Metal-binding ligands, Molecular weight, PARAFAC-EEMs
Electrochemical versus Chemical Oxidation of Bulky Phenols
Phenolic compounds are used in industry, such as agriculture and biotechnology, and inevitably end up in our environment. These compounds may serve as a phenolic precursor to produce raw materials for a wide range of applications. Chemical oxidation has been the common synthetic pathway to oxidize phenols and related compounds. However, traditional chemical approaches suffer from use of harsh chemicals, waste generation, and lack of reaction selectivity. Electrochemical synthesis has emerged as an alternative method to mitigate common challenges associated with organic synthesis. Herein, electrochemical oxidation of 2,6-diphenylphenol (DPP) and 2,2-dihydroxybiphenol (DHBP) was carried out and compared to traditional chemical oxidation. Contrasted with chemical oxidation, cyclic voltammetry of DPP resulted in a range of products based on the specific potential ranges used, whereas chemical oxidation of DHBP yield a dark-coloured polymeric product. The electrooxidation and chemical oxidation of DPP and DHBP resulted in a solution colour change, indicative of the formation of new, but different products monitored by UV-vis, and characterized by nuclear magnetic spectroscopy (NMR), X-ray single crystal diffraction, IR spectroscopy, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS). The data indicate that the synthetic outcomes are dependent on the synthetic methodology employed, and that electrooxidation and chemical oxidation can form products unique to the pathway utilized. Author Keywords: chemoselectivity, electrochemistry, phenols, radical, synthesis
Fate of Silver Nanoparticles in Lake Mesocosms
The fate of silver nanoparticles (AgNPs) in surface waters determines the ecological risk of this emerging contaminant. In this research, the fate of AgNPs in lake mesocosms was studied using both a continuous (i.e. drip) and one-time (i.e. plug) dosing regime. AgNPs were persistent in the tested lake environment as there was accumulation in the water column over time in drip mesocosms and slow dissipation from the water column (half life of 20 days) in plug mesocosms. In drip mesocosms, AgNPs were found to accumulate in the water column, periphtyon, and sediment according to loading rate; and, AgNP coating (PVP vs. CT) had no effect on agglomeration and dissolution based on filtration analysis. In plug mesocosms, cloud point extraction (CPE), single-particle-inductively coupled mass spectroscopy (spICP-MS), and asymmetrical flow field-flow fractionation (AF4-ICP-MS) confirmed the temporal dissolution of AgNPs into Ag+ over time; however, complexation is expected to reduce the toxicity of Ag+ in natural waters. Author Keywords: AF4-ICP-MS, cloud point extraction, fate, mesocosms, silver nanoparticles, SP-ICP-MS
Effects of Local, Landscape, and Temporal Variables on Bobolink Nest Survival in Southern Ontario
Populations of grassland birds, including the Bobolink (Dolichonyx oryzivorus), are experiencing steep declines due to losses of breeding habitat, land use changes, and agricultural practices. Understanding the variables affecting reproductive success can aid conservation of grassland species. I investigated 1) whether artificial nest experiments accurately estimate the impacts of cattle on the daily survival rate of Bobolink nests and 2) which local, landscape, and temporal variables affect daily survival rate of Bobolink nests in Southern Ontario. I replicated an artificial nest experiment performed in 2012 and 2015 to compare the daily survival rate of artificial and natural nests at multiple stocking rates (number of cattle × days × ha-1). I also monitored Bobolink nests and modeled daily survival rate using local variables (e.g., stocking rate, field use, patch area), landscape variables (e.g., percent forest within 2, 5, and 10 km), and temporal variables (e.g., year, date of season). Results indicate that artificial nest experiments using clay shooting targets overestimated the impacts of stocking rate on the daily survival rate of Bobolink nests. With natural nests, region (confounded by year and field use), stocking rate, and date of season were the strongest predictors of daily survival rate; with stocking rate and date of season both having a negative effect. Management should focus on conserving pastures with low stocking rates (< 40 cattle × days × ha-1), late-cut hayfields, fallow fields, and other grasslands to protect breeding grounds for the Bobolink and other declining grassland bird species. Author Keywords: Bobolink, Daily survival rate, landscape variables, local variables, Nest survival, temporal variables
Reproductive Fitness of Smallmouth Bass (Micropterus dolomieu) Under Heterogeneous Environmental Conditions
Identifying the biotic and abiotic factors that influence individual reproductive fitness under natural conditions is essential for understanding important aspects of a species’ evolutionary biology and ecology, population dynamics, and life-history evolution. Using next generation sequencing technology, I developed five microsatellite multiplex reactions suitable for conducting large scale parentage analysis of smallmouth bass, Micropterus dolomieu, and used molecular pedigree reconstruction techniques to characterize the genetic mating system and mate selection in adult smallmouth bass nesting in Lake Opeongo, Ontario, Canada. I used multivariate spatial autocorrelation analysis to indirectly infer the occurrence and extent of natal philopatry among spawning adults, to assess the strength and direction of sex-bias in natal dispersal patterns, and to evaluate the degree of nest site fidelity and breeding dispersal of spawning adults. I also evaluated how differences in littoral zone water temperature caused by wind-induced seiche events influence the relative reproductive success of spawning adults. Lastly, I provide a synopsis of potential future research aimed at further exploring factors that influence the reproductive fitness of smallmouth bass in Lake Opeongo. This information will contribute to our understanding of the factors regulating smallmouth bass populations, and provide insight into the factors controlling the variance in individual reproductive success and thus recruitment dynamics in this species. Author Keywords: Dispersal, Fitness, Mate selection, Mating systems, Philopatry
Exploring reproduction in wild blue lupine (Lupinus perennis) in comparison to L. polyphyllus and L. albus
Wild lupine (Lupinus perennis) restoration efforts seek to increase and connect populations, using seeds, to facilitate the recovery of endangered butterflys in Ontario. This study observed plant growth and phytohormone levels of L. albus, L. polyphyllus, and L. perennis through stages of seed development, each with varying strategies in growth and reproductive investment. L. polyphyllus is similar to L. perennis in morphology, acting as similar comparable with L. albus, a well-studied annual, as an outgroup comparator. Wild lupines showed a lack of sexual reproductive effort as they did not put as much effort into above ground growth, and few in the population reproduces. They also showed cis-zeatin, a weaker cytokinin, throughout development and had higher amounts of abscisic acid at the end of seed maturity, impacting their ability to develop and germinate. These factors contribute to why wild lupines are difficult to restore using seeds, limiting expansion and challenging restoration. Author Keywords: L. albus, L. perennis, L. polyphyllus, plant physiology, seed development, Wild blue lupine


Search Our Digital Collections


Enabled Filters

  • (-) = Environmental and Life Sciences

Filter Results


2003 - 2033
Specify date range: Show
Format: 2023/12/04