Graduate Theses & Dissertations

Pages

ASSESSING THE IMPACT OF ATMOSPHERIC DEPOSITION AND HARVEST INTENSITY ON SOIL ACIDITY AND NUTRIENT POOLS IN PLANTATION FORESTS
The objective of this thesis was to assess the influence of anthropogenic sulphur (S) and nitrogen (N) deposition, and harvesting on soil acidity and calcium (Ca2+), magnesium (Mg2+), potassium (K+) and N soil pools in plantation forest soils in Ireland. The response to reductions in anthropogenic S deposition was assessed using temporal trends in soil solution chemistry at two long-term monitoring plots--one on a blanket peat, the other on a peaty podzol. At the peat site, there was little evidence of a response to reductions in throughfall non marine sulphate (nmSO42-) and acidity; soil water acidity was determined by organic acids. In addition, temporal variation in soil water did not respond to that in throughfall. In the podzol, reductions in anthropogenic S and H+ deposition led to a significant improvement in soil water chemistry at 75 cm; pH increased and total aluminum (Altot) concentrations declined. The impact of harvest scenarios on exchangeable Ca2+, Mg2+ and K+ pools was assessed using input-output budgets at 40 sites (30 spruce, 10 pine). Harvest scenarios were stem-only harvest (SOH), stem plus branch harvest (SBH) and stem, branch and needle harvest (whole-tree harvesting; WTH). Average K+ and Mg2+ budgets were positive under these scenarios. However, exchangeable K+ pools were small and due to uncertainty in K+ budgets, could be depleted within one rotation. Average Ca2+ budgets for spruce were balanced under SOH, but negative under SBH and WTH. Nitrogen deposition was high, between 5 and 19 kg N ha-1 yr-1, but was balanced by N removal in SOH. However, N budgets were under SBH and WTH, indicating that these harvesting methods would lead to depletion of soil N over the long-term. Finally, monitoring of N cycling at a spruce plot indicated that N deposition was contributing to large NO3- leaching, and as such the site was N saturated. However, N cycling did not fit the criteria of the N saturation hypothesis; instead leaching was directly related to N deposition and supported the model of kinetic N saturation. Author Keywords: acidic deposition, base cations, input-output budgets, Ireland, nitrogen, whole-tree harvesting
Seasonal variation in nutrient and particulate inputs and outputs at an urban stormwater pond in Peterborough, Ontario
Stormwater ponds (SWPs) are a common feature in new urban developments where they are designed to minimize runoff peaks from impervious surfaces and retain particulate matter. As a consequence, SWPs can be efficient at retaining particle-bound nutrients, but may be less efficient at retaining nutrients that are present primarily in the dissolved form, like nitrogen (N). However, the forms of nutrients (e.g. particulate vs. dissolved) likely differ with hydrologic and seasonal conditions and few studies have examined year-round differences in nutrient forms and concentrations at urban SWPs. In order to contrast total suspended solids (TSS), phosphorus (P) and nitrogen (N) levels between low and high flow conditions, sampling was conducted at an urban SWP in Peterborough, ON between November 2012 and October 2013. Only an increase in TSS levels at the outflow between low and high flow conditions was observed, as well as a decrease in TSS levels at the outflow compared to Inflow 1 under low flow conditions. Nitrate-N (NO3-N) was the dominant form of N entering the pond under all flow conditions, whereas the fraction of total-P (TP) that was particulate increased under high flow conditions. Nevertheless, the dissolved fraction of TP was consistently high in these urban inlets. Only NO3-N was significantly greater in the inflows than outflow and only under low flow conditions. Increases in the proportions of organic-N and ammonium-N in the outlet suggest that biological processing is important for N retention. Author Keywords: nitrogen, Ontario, phosphorus, stormwater ponds, total suspended solids
Hydroclimatic and spatial controls on stream nutrient export from forested catchments
Winter nutrient export from forested catchments is extremely variable from year-to-year and across the landscape of south-central Ontario. Understanding the controls on this variability is critical, as what happens during the winter sets up the timing and nature of the spring snowmelt, the major period of export for water and nutrients from seasonally snow-covered forests. Furthermore, winter processes are especially vulnerable to changes in climate, particularly to shifts in precipitation from snow to rain as air temperatures rise. The objective of this thesis was to assess climatic and topographic controls on variability in stream nutrient export from a series of forested catchments in south-central Ontario. The impacts of climate on the timing and magnitude of winter stream nutrient export, with particular focus on the impact of winter rain-on-snow (ROS) events was investigated through a) analysis of long-term hydrological, chemical and meteorological records and b) high frequency chemical and isotopic measurements of stream and snow samples over two winters. The relationship between topography and variability in stream chemistry among catchments was investigated through a) a series of field and laboratory incubations to measure rates and discern controls on nitrogen mineralization and nitrification and b) analysis of high resolution spatial data to assess relationships between topographic metrics and seasonal stream chemistry. Warmer winters with more ROS events were shown to shift the bulk of nitrate (NO3-N) export earlier in the winter at the expense of spring export; this pattern was not observed in other nutrients [i.e. dissolved organic carbon (DOC), total phosphorus (TP), sulphate (SO4), calcium (Ca)]. Hydrograph separation revealed the majority of ROS flow came from baseflow, but the NO3-N concentrations in rainfall and melting snow were so high that the majority of NO3-N export was due to these two sources. Other nutrient concentrations did not show such a great separation between sources, and thus event export of these nutrients was not as great. Proportionally, catchments with varying topography responded similarly to ROS events, but the absolute magnitude of export varied substantially, due to differences in baseflow NO3-N concentrations. Field and laboratory incubations revealed differences in rates of net NO3-N production between wetland soils and upland soils, suggesting that topographic differences amongst catchments may be responsible for differences in baseflow NO3-N. Spatial analysis of digital elevation models revealed strong relationships between wetland coverage and DOC and dissolved organic nitrogen (DON) concentrations in all seasons, but relationships between topography and NO3-N were often improved by considering only the area within 50 or 100m of the stream channel. This suggests nutrient cycling processes occurring near the stream channel may exert a stronger control over NO3-N stream outflow chemistry. Overall, topography and climate exert strong controls over spatial and temporal variability in stream chemistry at forested catchments; it is important to consider the interaction of these two factors when predicting the effects of future changes in climate or deposition. Author Keywords: biogeochemistry, forest, nitrate, south-central Ontario, stream chemistry, winter
Factors Controlling Peat Chemistry and Vegetation Composition in Sudbury Peatlands after 30 Years of Emission Reductions
Peatlands are prevalent in the Sudbury, Ontario region. Compared with the well documented devastation to the terrestrial and aquatic ecosystems in this region, relatively little work has been conducted on the peatlands. The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands in Sudbury after over 30 years of emission reductions. Peatland chemistry and the degree of humification varies considerably, but sites closer to the main smelter had more humified peat and the surface horizons were enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with Cu and Ni in the plant tissue of leatherleaf, although the increased foliar metal content did not obviously impact secondary chemistry stress indicators. The pH and mineral content of peat were the strongest determining factors for species richness, diversity and community composition. The bryophyte communities appear to be acid and metal tolerant, although Sphagnum mosses are showing limited recovery. Author Keywords: anthropogenic emissions, bryophytes, community comspoition, heavy metals, peatlands, wetland vegetation
Phosphorus forms and response to changes in pH in acid-sensitive soils on the Precambrian Shield
Catchment soil acidification has been suggested as a possible mechanism for reducing phosphorus (P) loading to surface waters in North America and northern Europe, but much of the research that has been conducted regarding P immobilization in pH manipulated soils has been performed at high P concentrations (> 130 μM). This study investigated how soil acidity was related to P fractionation and P sorption at environmentally relevant P concentrations to evaluate the potential influence of long term changes in soil pH on P release to surface waters. Total phosphorus (TP) concentrations declined between 1980 and 2000 in many lakes and streams in central Ontario; over the same time period forest soils in this region became more acidic. Soils were collected from 18 soil pits at three forested catchments with similar bedrock geology but varying TP export loads. The soil pH at the 18 study soil pits spanned the historic soil pH range, allowing for `space for time' comparison of soil P factions. Soils were analysed by horizon for P fractions via Hedley P fractionation. Batch P sorption experiments were performed on selected B-horizon soils at varied solution pH. Soil P fractions varied by horizon but were comparable among the three catchments, with only apatite (PHCl) differing significantly across catchments. Contrary to expectation, both soluble and labile P showed negative relationships with pH in some horizons. Mineral soils were able to sorb almost all (> 90 %) of the P in solution at environmentally relevant P concentrations (4.5 - 45.2 μM). Phosphorus sorption at environmentally relevant P concentrations was unrelated to solution pH but at high P concentration there was a positive relationship between P sorption and solution pH, suggesting a P concentration dependant P sorption mechanism. Phosphorus budgets indicate that P is accumulating within catchments, suggesting that P is being immobilized in the terrestrial environment. An alternative hypothesis, which attempts to explain both the decline in stream TP export and terrestrial P accumulation, is discussed. The results from this study suggest that acidification induced P sorption in upland soils are not a contributing factor to decreases in stream TP concentration in the study catchments. Author Keywords: central Ontario, Hedley fractionation, phosphorus, podzols, soil acidification, sorption

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Watmough

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/11/22

Author Last Name

Show more

Last Name (Other)

Show more

Degree Discipline