Graduate Theses & Dissertations

Pages

MOVEMENT PARAMETERS AND SPACE USE FOR THE SOUTHERN HUDSON BAY POLAR BEAR SUBPOPULATION IN THE FACE OF A CHANGING CLIMATE
Changes to the Arctic and sub-Arctic climate are becoming increasingly evident as it warms faster than other areas of the globe, supporting evidence that predictions of future warming will be amplified due to positive feedback mechanisms. The Southern Hudson Bay polar bear (Ursus maritimus) subpopulation is one of the most southerly subpopulations in the world, putting it at increased risk due to effects of climate change. Whereas many other subpopulations have been the subject of intense research and monitoring, little research has been completed detailing the movement behaviour and space use of bears within Southern Hudson Bay. I used detailed movement data collected on female polar bears to establish a baseline of movement information for this subpopulation to which future work can be compared and effects of climate change can be assessed I evaluated the use of core areas during critical periods of the year (breeding and ice breakup) and evaluated common space use as a means of assessing site fidelity during the breeding season. Movement rates and home range sizes were comparable to those of the neighbouring Western Hudson Bay subpopulation. I also found evidence of increased occurrences of long distance, late fall movements along the coast to the northwest, presumably to gain earlier access to first ice. Though space use analysis did not reveal evidence of site fidelity to specific breeding areas in Hudson Bay, I found that core use areas are at risk of substantially shortened ice duration (x¯ =76 days shorter) using projected ice data based on the high emissions A2 climate change scenario. Author Keywords: climate change, Hudson Bay, movement, polar bear, sea ice, utilization distribution
NMR and EPR Studies on Cytochrome b5 Isotypes of Giardia intestinalis
The amitochondrial protozoan, Giardia intestinalis, encodes four members of the cytochrome b5 (CYTB5) family of heme proteins of unknown function. While homology models can predict the likely fold of these proteins, supporting experimental evidence is lacking. The small size of the cytochromes (~16 kDa) makes them attractive targets for structural analysis by Electron Paramagnetic Resonance spectroscopy (EPR) and Nuclear Magnetic Resonance spectroscopy (NMR). EPR measurements are particularly useful in defining the geometry of the coordination environment of the heme iron; such measurements indicated that the planar imidazole rings of the invariant histidine axial ligands are nearly perpendicular to each other, rather than in the coplanar orientation observed within mammalian CYTB5s. This may be due to geometrical constraints imposed by a one-residue shorter spacing between the ligand pair in the Giardia cytochromes b5 (gCYTB5s). Following optimization of sample and instrument conditions for NMR experiments, a comparison of the 1D 1H-NMR spectra of gCYTB5 isotype I to those of three of its heme-pocket mutants (Tyr51→Phe, Tyr61→F, and Cys84→Ala) were used to tentatively assign the heme methyl and vinyl protons. Mutant Tyr61→F had the greatest effect on the wild-type spectrum due to maximum through-space contacts with the heme macrocycle and its proximity to the His63 axial ligand. These experiments are a prelude to further NMR experiments that can lead to solving the complete structures of these proteins. Author Keywords: cytochrome b5, heme b, mutant protein, paramagnetic iron, resonant spectroscopy, sequence homology
Early Responses of Understory Vegetation to Above Canopy Nitrogen Additions in a Jack Pine Stand in Northern Alberta
Abstract Early Responses of Understory Vegetation After One Year of Above Canopy Nitrogen Additions in a Jack Pine Stand in Northern Alberta Nicole Melong Nitrogen (N) emissions are expected to increase in western Canada due to oil and gas extraction operations. An increase in N exposure could potentially impact the surrounding boreal forest, which has adapted and thrived under traditionally low N deposition. The majority of N addition studies on forest ecosystems apply N to the forest floor and often exclude the important interaction of the tree canopy. This research consisted of aerial NH4NO3 spray applications (5, 10, 15, 20, 25 kg N ha-1yr-1) by helicopter to a jack pine (Pinus banksiana Lamb.) stand in the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. The main objective was to assess the impacts of elevated N after one year of treatment on the chemistry of understory vegetation, which included vascular plants, terricolous lichens, epiphytic lichens and a terricolous moss species. Changes in vegetation chemistry are expected to be early signs of stress and possible N saturation. Increased N availability is also thought to decrease plant secondary compound production because of a tradeoff that exists between growth and plant defense compounds when resources become available. Approximately 60% of applied N reached the ground vegetation in throughfall (TF) and stemflow (SF). Nitrate was the dominant form of N in TF in all treated plots and organic N (ON) was the dominant form of N in SF in all plots. The terricolous non-vascular species were the only understory vegetation that responded to the N treatments as N concentration increased with increased treatment. Foliar chemistry of the measured epiphytic lichens, vascular species, and jack pine was unaffected by the N treatments. Based on biomass measurements and N concentration increases, the non-vascular terricolous species appear to be assimilating the majority of TF N after one year. Vegetation from the high treatment plot (25 kg N ha-1yr-1) was compared to a jack pine forest receiving ambient high levels of N (21 kg N ha-1yr-1) due to its proximity to Syncrude mining activities. Nitrogen concentrations in plant tissues did not differ between the two sites; however, other elements and compounds differed significantly (Ca, Mg, Al, Fe). After one year of experimental N application, there were no environmental impacts consistent with the original N saturation hypothesis. Author Keywords: Athabasca Oil Sands Region, Canopy Interactions, Jack Pine, Nitrogen, Secondary Chemistry, Understory Vegetation
influence of landscape features on the harvest of caribou (Rangifer tarandus) on the island of Newfoundland
Hunting represents the principal tool for managing populations of migratory caribou (Rangifer tarandus), but harvest may be affected by landscape features that govern animal distribution and hunter access. Such effects are unclear. I capitalized on an existing dataset of 21 355 caribou harvest records, 1980 – 2009, to determine the influence of landscape features on caribou harvest across the island of Newfoundland. Using a landcover map and spatial data for anthropogenic features, I modelled caribou harvest at the island scale for three phases of numerical change (growth in the 1980s, cessation of growth in the 1990s, decline in the 2000s) and harvest type (total harvest, resident harvest of males and females, resident harvest of males, resident harvest of females, and non-resident harvest of males) in relation to multiple putative predictor variables: proportion of lichen cover and distances to nearest forest cut, road, outfitter, transmission line, and town. I did the same analysis for seven individual Caribou Management Areas (CMAs). At the island scale, the number of harvested caribou increased with proximity to the nearest forest cut and with greater proportions of lichen habitat. I attribute this to landscape features that provide forage for caribou, but also access and caribou visibility for hunters. Caribou harvest increased in proximity to transmission lines for the harvest of caribou by resident hunters in the 2000s, which could be a result of more risk-prone foraging Newfoundland caribou. Non-resident hunters harvested greater numbers of male caribou further from towns, likely a result of the placement of outfitter camps and activities. At the management area scale, in most instances, more caribou harvest occurred in close proximity to transmission lines. Proximity to forest cuts and high proportions of lichen were still important landscape features leading to a greater harvest. I conclude that the caribou harvest was largely governed by hunter access and visibility of their prey, augmented by open habitats preferred by caribou. KEYWORDS Caribou, Newfoundland, Rangifer tarandus, harvest, hunting, management area, landscape, human disturbances, game species vulnerability. Author Keywords: caribou, game species vulnerability, harvest, hunting, newfoundland, rangifer tarandus
Linking large scale monitoring and spatially explicit capture–recapture models to identify factors shaping large carnivore densities
Understanding the spatial ecology of large carnivores in increasingly complex, multi-use landscapes is critical for effective conservation and management. Complementary to this need are robust monitoring and statistical techniques to understand the effect of bottom-up and top-down processes on wildlife population densities. However, for wide-ranging species, such knowledge is often hindered by difficulties in conducting studies over large spatial extents to fully capture the range of processes influencing populations. This thesis addresses research gaps in the above themes in the context of the American black bear (Ursus americanus) in the multi-use landscape of Ontario, Canada. First, I assess the performance of a widely adopted statistical modelling technique – spatially explicit capture-recapture (SECR) – for estimating densities of large carnivores (Chapter 2). Using simulations, I demonstrate that while SECR models are generally robust to unmodeled spatial and sex-based variation in populations, ignoring high levels of this variation can lead to bias with consequences for management and conservation. In Chapter 3, I investigate fine-scale drivers of black bear population density within study areas and forest regions by applying SECR models to a large-scale, multi-year black bear spatial capture-recapture dataset. To identify more generalizable patterns, in Chapter 4 I then assess patterns of black bear density across the province and within forest regions as a function of coarse landscape-level factors using the same datasets and assess the trade-offs between three different modeling techniques. Environmental variables were important drivers of black bear density across the province, while anthropogenic variables were more important in structuring finer-scale space use within study areas. Within forest regions these variables acted as both bottom-up and top-down processes that were consistent with ecological influences on black bear foods and intensity of human influences on the species’ avoidance of developed habitats. Collectively, this thesis highlights the opportunities and challenges of working across multiple scales and over expansive landscapes within a SECR framework. Specifically, the multi-scale approach of this thesis allows for robust inference of the mechanisms structuring fine and broad scale patterns in black bear densities and offers insight to the relative influence of top-down and bottom-up forces in driving these patterns. Taken together, this thesis provides an approach for monitoring large carnivore population dynamics that can be leveraged for the species conservation and management in increasingly human-modified landscapes. Author Keywords: animal abundance, black bear, capture-recapture, density estimation, statistical ecology, wildlife management
role of Cln5 in autophagy, using a Dictyostelium discoideum model of Batten disease
This thesis investigated the role of the neuronal ceroid lipofuscinosis protein, Cln5, during autophagy. This was accomplished by performing well-established assays in a Dictyostelium cln5 knockout model (cln5-). In this study, cln5- cells displayed a reduced maximum cell density during growth and impaired cell proliferation in autophagy-stimulating media. cln5- cells had an increased number of autophagic puncta (autophagosomes and lysosomes), suggesting that autophagy is induced when cln5 is absent. cln5- cells displayed increased amounts of ubiquitin-positive proteins but had no change in proteasome protein abundance. During the development of cln5- cells, fruiting bodies developed precociously and cln5- slug size was reduced. Lastly, when cln5- cells were developed on water agar containing ammonium chloride (NH4Cl), a lysosomotropic agent, the formation of multicellular structures was impaired, and the small slug phenotype was exaggerated. In summary, these results indicate that Cln5 plays a role in autophagy in Dictyostelium. The cellular processes that regulate autophagy in Dictyostelium are similar to those that regulate the process in mammalian cells. Thus, this research provides insight into the undefined pathological mechanism of CLN5 disease and could identify cellular pathways for targeted therapeutics. Author Keywords: Autophagy, Batten disease, Cln5, Dictyostelium discoideum, NCL
Testing for Interspecific Hybridization and a Latitudinal Cline Within the Clock Gene Per1 of the Deer Mouse (Peromyscus maniculatus) and the White-Footed Mouse (Peromyscus leucopus)
The recent northward expansion of the white-footed mouse (Peromyscus leucopus) in response to climatic changes provides a natural experiment to explore potential adaptive genetic variation within the clock gene Per1 in Peromyscus undergoing latitudinal shifts, as well as, the possibility of hybridization and introgression related to novel secondary contact with its sister species the deer mouse (Peromyscus maniculatus). Because clock genes influence the timing of behaviors critical for survival, variations in genotype may reflect an organism’s ability to persist in different environments. Hybridization followed by introgression may increase the adaptive potential of a species by quickly generating adaptive variation through novel genetic recombination or by the transfer of species-specific alleles that have evolved in response to certain environments. In chapter 2, I used microsatellite and mtDNA markers to test for hybridization and introgression between P. maniculatus and P. leucopus and found that interbreeding is occurring at a low frequency (<1%). In chapter 3, I tested for a latitudinal cline in a polyglycine repeat located within the Per1 gene of Peromyscus and discovered a putative cline in the Per1-142 and Per1-157 allele of P. leucopus and P. maniculatus, respectively. Chapter 4, further expands upon these findings, limitations, and the lack of evidence supporting introgression at the Per1 locus. Despite this lack of evidence, it is possible that novel hybridization has or could lead to adaptive introgression of other genes, allowing for the exchange of adaptive alleles or traits that could be advantageous for range expansion and adaption to future environmental changes. Author Keywords: Clock genes, Hybridization, Latitudinal gradient, Per1, Peromyscus, Range Expansion
Effect of Water Surface Simulated Rain Drop Impacts on Water to Air Chemical Transfers of Perfluorinated Carboxylic Acids (PFCAs)
Perfluorinated carboxylic acids (PFCAs) are anthropogenic environmentally ubiquitous surfactants that tend to concentrate on water surfaces. This investigation looked at the effect of simulated rain on the atmospheric concentration of a suite of PFCAs (C2 - C12) above the bulk water system. Increased air concentrations of all PFCAs were detected during simulated rain events. Long chain PFCAs (>C8) were found to be much more concentrated in the air above the bulk water system than their short chain counter parts (
Habitat use and community structure of grassland birds in southern Ontario agro-ecosystems.
Most grassland bird populations are in decline, so it is becoming increasingly important to understand how they use agricultural field types and form their communities. I performed point counts in cultural meadow, intensive agriculture, and non-intensive agriculture areas in 2011 and 2012. Generalized linear models were used to determine the habitat relationships of six focal species. I found that non-intensive agriculture was used most often and intensive agriculture was often avoided, but there were exceptions which indicate habitat use can be species-specific. I determined in which habitats competition was likely occurring and which species pairs were competing in 2011. In 2012, I experimentally tested these relationships by introducing artificial competitors onto sites. By comparing presence-absence data from 2011 to 2012, I found evidence of habitat-mediated interspecific and conspecific attraction involving Bobolink and Grasshopper Sparrow. This research contributes to the current understanding of grassland bird community ecology and conservation. Author Keywords: agriculture, BACI, community ecology, habitat use, species at risk, species interactions
Tracking Mercury and Mercury Stable Isotopes Throughout the Wabigoon/English River System
In the Wabigoon/English River system, mercury concentrations downstream from Dryden, ON, where there was a former chlor-alkali plant, remain elevated in sediments and biota. Understanding the current extent and severity of mercury contamination downstream from the former chlor-alkali plant is of great interest in furthering the clean-up of mercury within the traditional territory of Asubpeeschoseewagong Netum (Grassy Narrows) First Nation. The objective of this study was to evaluate the current level and extent of mercury contamination within sediments, crayfish, Hexagenia mayflies, yellow perch, spottail shiner and walleye in the Wabigoon/English River system. An additional objective was to use mercury stable isotope analysis to distinguish between legacy mercury from the former chlor-alkali plant and mercury from geogenic sources. Mercury contamination within surface sediments and biota at locations as far as 178 kms downstream of the historical source of mercury contamination are elevated relative to the reference lake, Wabigoon Lake. Isotope ratios in young of the year fish and sediments collected from within the system were distinct from fish from the reference lake, Wabigoon Lake, indicating that anthropogenic mercury contamination is distinguishable from geogenic mercury. Author Keywords:
Landscape fitness
Variation in habitat quality and disturbance levels can strongly influence a species’ distribution, leading to spatial variation in population density and influencing population dynamics. It is therefore critical to understand how density can lead to variability in demographic responses for effective conservation and recovery of species. My dissertation illustrates how density and spatial familial networks can be integrated together to gain a better understanding of the influence of density on population dynamics of boreal caribou. First, I created an analytical framework to assess results from empirical studies to inform spatially-explicit capture-recapture sampling design, using both simulated and empirical data from noninvasive genetic sampling of several boreal caribou populations in Alberta, Canada, which varied in range size and estimated population density. Analysis of the empirical data indicated that reduced sampling intensity had a greater impact on density estimates in smaller ranges, and the best sampling designs did not differ with estimated population density but differed between large and small population ranges. Secondly, I used parent-offspring relationships to construct familial networks of boreal caribou in Saskatchewan, Canada to inform recovery efforts. Using network measures, I assessed the contribution of individual caribou to the population with several centrality measures and then determined which measures were best suited to inform on the population demographic structure. I found substantial differences in the centrality of individuals in different local areas, highlighting the importance of analyzing familial networks at different spatial scales. The network revealed that boreal caribou in Saskatchewan form a complex, interconnected familial network. These results identified individuals presenting different fitness levels, short- and long-distance dispersing ability across the range, and can be used in support of population monitoring and recovery efforts. Finally, I used a spatial capture-recapture analytical framework with covariates to estimate spatial density of boreal woodland caribou across the Saskatchewan Boreal Plains, and then reconstructed parent-offspring relationships to create a familial network of caribou and determined whether spatial density influenced sex-specific network centrality, dispersal distance, individual reproductive success, and the pregnancy status of females. I show that caribou densitygreatly varied across the landscape and was primarily affected by landscape composition and fragmentation, and density had sex-specific influences on dispersal distance, reproductive success, and network centrality. The high density areas reflected good-quality caribou habitat, and the decreased dispersal rates and female reproductive output suggest that these remnant patches of habitat may be influencing demographic responses of caribou. Author Keywords: boreal caribou, density, familial networks, population dynamics, rangifer tarandus caribou, spatial capture-recapture
Mercury and Persistent Organic Pollutants in Remote Acid Sensitive Irish Lake Catchments
A catchment-based study was carried out at three remote acid sensitive Irish lakes to determine concentrations of Hg and POPs and to investigate the factors governing the partitioning of these pollutants in various environmental matrices. Both Hg and POPs are an environmental concern due to their ability to travel long distances via atmospheric transport and their tendency to accumulate in biota and in various environmental compartments. Concentrations of POPs and Hg measured in this study were relatively low and consistent with concentrations measured at background levels around the world. Mercury concentrations appeared to be influenced by various site characteristics, specifically organic matter. Many of the POPs examined in this study appeared to be present as a result of long-range transport and more specifically; the physico-chemical properties of POPs appeared to dictate their distribution within soils, moss and sediment at each of the study catchments. Author Keywords:

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Environmental and Life Sciences

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/02/27