Graduate Theses & Dissertations

Pages

Machine Learning Using Topology Signatures For Associative Memory
This thesis presents a technique to produce signatures from topologies generated by the Growing Neural Gas algorithm. The generated signatures have the following characteristics: The signature's memory footprint is smaller than the "real object" and it represents a point in the n x m multidimensional space. Signatures can be compared based on Euclidean distance and distances between signatures provide measurements of differences between models. Signatures can be associated with a concept and then be used as a learning step for a classification algorithm. The signatures are normalized and vectorized to be used in a multidimensional space clustering. Although the technique is generic in essence, it was tested by classifying alphabet and numerical handwritten characters and 2D figures obtaining a good accuracy and precision. It can be used for many other purposes related to shapes and abstract typologies classification and associative memory. Future work could incorporate other classifiers. Author Keywords: Associative memory, Character recognition, Machine learning, Neural gas, Topological signatures, Unsupervised learning
An Investigation of Load Balancing in a Distributed Web Caching System
With the exponential growth of the Internet, performance is an issue as bandwidth is often limited. A scalable solution to reduce the amount of bandwidth required is Web caching. Web caching (especially at the proxy-level) has been shown to be quite successful at addressing this issue. However as the number and needs of the clients grow, it becomes infeasible and inefficient to have just a single Web cache. To address this concern, the Web caching system can be set up in a distributed manner, allowing multiple machines to work together to meet the needs of the clients. Furthermore, it is also possible that further efficiency could be achieved by balancing the workload across all the Web caches in the system. This thesis investigates the benefits of load balancing in a distributed Web caching environment in order to improve the response times and help reduce bandwidth. Author Keywords: adaptive load sharing, Distributed systems, Load Balancing, Simulation, Web Caching
ADAPT
This thesis focuses on the design of a modelling framework consisting of loose-coupling of a sequence of spatial and process models and procedures necessary to predict future flood events for the years 2030 and 2050 in Tabasco Mexico. Temperature and precipitation data from the Hadley Centers Coupled Model (HadCM3), for those future years were downscaled using the Statistical Downscaling Model (SDSM4.2.9). These data were then used along with a variety of digital spatial data and models (current land use, soil characteristics, surface elevation and rivers) to parameterize the Soil Water Assessment Tool (SWAT) model and predict flows. Flow data were then input into the Hydrological Engineering Centers-River Analysis System (HEC-RAS) model. This model mapped the areas that are expected to be flooded based on the predicted flow values. Results from this modelling sequence generate images of flood extents, which are then ported to an online tool (ADAPT) for display. The results of this thesis indicate that with current prediction of climate change the city of Villahermosa, Tabasco, Mexico, and the surrounding area will experience a substantial amount of flooding. Therefore there is a need for adaptation planning to begin immediately. Author Keywords: Adaptation Planning, Climate Change, Extreme Weather Events, Flood Planning, Simulation Modelling
An Investigation of the Impact of Big Data on Bioinformatics Software
As the generation of genetic data accelerates, Big Data has an increasing impact on the way bioinformatics software is used. The experiments become larger and more complex than originally envisioned by software designers. One way to deal with this problem is to use parallel computing. Using the program Structure as a case study, we investigate ways in which to counteract the challenges created by the growing datasets. We propose an OpenMP and an OpenMP-MPI hybrid parallelization of the MCMC steps, and analyse the performance in various scenarios. The results indicate that the parallelizations produce significant speedups over the serial version in all scenarios tested. This allows for using the available hardware more efficiently, by adapting the program to the parallel architecture. This is important because not only does it reduce the time required to perform existing analyses, but it also opens the door to new analyses, which were previously impractical. Author Keywords: Big Data, HPC, MCMC, parallelization, speedup, Structure

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Bowman
  • (-) = Computer science
  • (-) ≠ Weygang
  • (-) = Applied Modeling and Quantitative Methods
  • (-) ≠ Mathematics
  • (-) ≠ Branch, Richard Arthur Conan