Graduate Theses & Dissertations

Pages

Fraud Detection in Financial Businesses Using Data Mining Approaches
The purpose of this research is to apply four methods on two data sets, a Synthetic dataset and a Real-World dataset, and compare the results to each other with the intention of arriving at methods to prevent fraud. Methods used include Logistic Regression, Isolation Forest, Ensemble Method and Generative Adversarial Networks. Results show that all four models achieve accuracies between 91% and 99% except Isolation Forest gave 69% accuracy for the Synthetic dataset. The four models detect fraud well when built on a training set and tested with a test set. Logistic Regression achieves good results with less computational eorts. Isolation Forest achieve lower results accuracies when the data is sparse and not preprocessed correctly. Ensemble Models achieve the highest accuracy for both datasets. GAN achieves good results but overts if a big number of epochs was used. Future work could incorporate other classiers. Author Keywords: Ensemble Method, GAN, Isolation forest, Logistic Regression, Outliers
Development of a Cross-Platform Solution for Calculating Certified Emission Reduction Credits in Forestry Projects under the Kyoto Protocol of the UNFCCC
This thesis presents an exploration of the requirements for and development of a software tool to calculate Certified Emission Reduction (CERs) credits for afforestation and reforestation projects conducted under the Clean Development Mechanism (CDM). We examine the relevant methodologies and tools to determine what is required to create a software package that can support a wide variety of projects involving a large variety of data and computations. During the requirements gathering, it was determined that the software package developed would need to support the ability to enter and edit equations at runtime. To create the software we used Java for the programming language, an H2 database to store our data, and an XML file to store our configuration settings. Through these choices, we can build a cross-platform software solution for the purpose outlined above. The end result is a versatile software tool through which users can create and customize projects to meet their unique needs as well as utilize the features provided to streamline the management of their CDM projects. Author Keywords: Carbon Emissions, Climate Change, Forests, Java, UNFCCC, XML
Characteristics of Models for Representation of Mathematical Structure in Typesetting Applications and the Cognition of Digitally Transcribing Mathematics
The digital typesetting of mathematics can present many challenges to users, especially those of novice to intermediate experience levels. Through a series of experiments, we show that two models used to represent mathematical structure in these typesetting applications, the 1-dimensional structure based model and the 2-dimensional freeform model, cause interference with users' working memory during the process of transcribing mathematical content. This is a notable finding as a connection between working memory and mathematical performance has been established in the literature. Furthermore, we find that elements of these models allow them to handle various types of mathematical notation with different degrees of success. Notably, the 2-dimensional freeform model allows users to insert and manipulate exponents with increased efficiency and reduced cognitive load and working memory interference while the 1-dimensional structure based model allows for handling of the fraction structure with greater efficiency and decreased cognitive load. Author Keywords: mathematical cognition, mathematical software, user experience, working memory

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Bowman
  • (-) ≠ Bell
  • (-) = Computer science
  • (-) ≠ Weygang
  • (-) = Applied Modeling and Quantitative Methods
  • (-) ≠ Mathematics