Graduate Theses & Dissertations

Pages

Characterizing the demographic history and prion protein gene variation to infer susceptibility to chronic wasting disease in a naïve population of white-tailed deer (Odocoileus virginianus)
Assessments of the adaptive potential of natural populations are essential for understanding and predicting responses to environmental stressors like climate change and infectious disease. The range of stressors species face in a human-dominated landscape, often have contrasting effects. White-tailed deer (Odocoileus virginianus, deer) are expanding in the northern part of their range following decreasing winter severity and increasing forage availability, caused by climate change. Chronic wasting disease (CWD), a prion disease affecting cervids, is likewise expanding and represents a major threat to deer and other cervids We obtained tissue samples from free-ranging deer across their native range in Ontario, Canada which has yet to detect CWD in wild populations of cervids. High throughput sequencing was used to assess neutral genomic variation and variation in the gene responsible for the protein that misfolds into prions when deer contract CWD, known as the PRNP gene. Neutral variation revealed a high number of rare alleles and no population structure, consistent with an expanding population of deer. Functional genetic variation revealed that the frequencies of variants associated to CWD susceptibility and disease progression were evenly distributed across the landscape and the frequencies were consistent with deer populations not infected with CWD. These findings suggest that an observable shift in PRNP allele frequencies likely coincides with the start of a novel CWD epidemic. Sustained surveillance of genomic and genetic variation can be a useful tool for CWD-free regions where deer are managed for ecological and economic benefits. Author Keywords: Canadian wildlife, population genetics, prion, PRNP, RADseq, ungulate
Islands, ungulates, and ice
Central to wildlife conservation and management is the need for refined, spatially explicit knowledge on the diversity and distribution of species and the factors that drive those patterns. This is especially vital as anthropogenic disturbance threatens rapid large-scale change, even in the most remote areas of the planet. My dissertation examines theinfluence of land- and sea-scape heterogeneity on patterns of genetic differentiation, diversity, and broad-scale distributions of island-dwelling ungulates in the Arctic Archipelago. First, I investigated genetic differentiation among island populations of Peary caribou (Rangifer tarandus pearyi) in contrast to continental migratory caribou (Rangifer tarandus) and evaluated whether genetic exchange among Peary caribou island populations was limited by the availability of sea ice – both now and in the future. Differentiation among both groups was best explained by geodesic distance, revealing sea ice as an effective platform for Peary caribou movement and gene flow. With future climate warming, substantial reductions in sea ice extent were forecast which significantly increased resistance to caribou movement, particularly in summer and fall. Second, I assessed genetic population structure and diversity of northern caribou and deciphered how Island Biogeography Theory (IBT) and Central Marginal Hypothesis (CMH) could act in an archipelago where isolation is highly variable due to the dynamics of sea ice. Genetic differentiation among continental and island populations was low to moderate. In keeping with IBT and CMH, island-dwelling caribou displayed lower genetic diversity compared to mainland and mainland migratory herds; the size of islands (or population range) positively influenced genetic diversity, while distance-to-mainland and fall ice-free coastlines negatively influenced genetic diversity. Hierarchical structure analysis revealed multiple units of caribou diversity below the species level. Third, I shifted my focus to the terrestrial landscape and explored the elements governing species-environment relationships. Using species distribution models, I tested the response of caribou and muskoxen to abiotic versus abiotic + biotic predictors, and included distance to heterospecifics as a proxy for competitive interactions. Models that included biotic predictors outperformed models with abiotic predictors alone, and biotic predictors were most important when identifying habitat suitability for both ungulates. Further, areas of high habitat suitability for caribou and muskoxen were largely disjunct, limited in extent, and mainly outside protected areas. Finally, I modelled functional connectivity for two genetically and spatially disjunct groups of island-dwelling caribou. For High Arctic caribou, natural and anthropogenic features impeded gene flow (isolation-by-resistance); for Baffin Island caribou we found panmixia with absence of isolation-by-distance. Overall, my dissertation demonstrates the varying influences of contemporary land- and sea-scape heterogeneity on the distribution, diversity and differentiation of Arctic ungulates and it highlights the vulnerability of island-dwelling caribou to a rapidly changing Arctic environment. Author Keywords: Circuitscape, connectivity, Island Biogeography, landscape genetics, population structure, species distribution models
Assessing Molecular and Ecological Differentiation in Wild Carnivores
Wild populations are notoriously difficult to study due to confounding stochastic variables. This thesis tackles two components of investigating wild populations. The first examines the use of niche modeling to quantify macro-scale predator-prey relationships in canid populations across eastern North America, while the second examines range-wide molecular structure in Canada lynx. The goal of the first chapter is to quantify niche characteristics in a Canis hybrid zone of C. lupus, C. lycaon, and C. latrans to better understand the ecological differentiation of these species, and to assess the impacts of incorporating biotic interactions into species distribution models. The goal of the second chapter is to determine if DNA methylation, an epigenetic marker that modifies the structure of DNA, can be used to differentiate populations, and might be a signature of local adaptation. Our results indicated that canids across the hybrid zone in eastern North America exhibit low levels of genetic and ecological differentiation, and that the importance of biotic interactions are largely lost at large spatial scales. We also identified cryptic structure in methylation patterns in Canada lynx populations, which suggest signatures of local adaptation, and indicate the utility of DNA methylation as a marker for investigating adaptive divergence. Author Keywords: Ecological Epigenetics, Ecological Genetics, SDM
Nutrigenomics of Daphnia
Organismal nutrition lies at the interface between biotic and abiotic factors in an ecosystem, dictating the transfer of energy and nutrients across trophic levels. Our ability to detect nutritional limitation in consumers is reliant on a priori knowledge of dietary history due to our inability to differentiate nutrient stress based on body-wide responses. Molecular physiological responses are increasingly being used to measure physiological stress with high levels of specificity due to the specific modes of action ecological stressors have on organismal molecular physiology. Because animal consumers respond to varying nutrient supplies by up- and down-regulating nutrient-specific metabolic pathways, we can quantify nutritional status by quantifying the expression of those pathways. Here I present an investigation into the use of transcriptomics to detect nutritional stress in the keystone aquatic herbivore, Daphnia pulex, I use RNAseq and quantitative PCR (qPCR) identify nutritional indicator genes. I found that nutritional status could be determined with 100% accuracy with just ten genes. Additionally, the functional annotation of those genes uncovered previously unidentified responses to dietary stress. Further testing and validation of the selected indicator genes is required however these findings have the potential to revolutionize our ability to measure and monitor consumer nutritional stress. Author Keywords: Biomarkers, Daphnia, Gene expression, Nutrigenomics, Nutritional ecology, RNAseq
Cytokinin Oxidase/Dehydrogenase (CKX) Gene Family in Soybeans (Glycine max)
Glycine max (soybean) is an economically important plant species that registers a relatively low yield/seed weight compared to other food and oil seed crops due to higher rates of flower and pod abortion. Alleviation of this abortion rate can be achieved by altering the sink strength of the reproductive organs of soybeans. Cytokinin (CK) plays a fundamental role in promoting growth of sink organ (flowers and seeds) by increasing the assimilate demand. Cytokinin oxidase/dehydrogenase (CKX) is an enzyme that catalyses the irreversible breakdown of active CKs and hence reduce the cytokinin content. The current thesis uncovers the members of CKX gene family in soybeans and the natural variations among CKX genes within soybean varieties with different yield characteristics. The identification of null variants of OsCKX2 that resulted in large yield increases by Ashikari et al. (2005) provided a rationale for current thesis. The soybean CKX genes along with the ones from Arabidopsis, Rice and Maize were used to construct a phylogenetic tree. Using comparative phylogeny, protein properties and bioinformatic programs, the potential effect of the identified natural variations on soybean yield was predicted. Five genes among the seventeen soybean CKXs identified, showed polymorphisms. One of the natural variations, A159G, in the gene GmCKX16 occurred close to the active site of the protein and was predicted to affect the activity of enzyme leading to higher accumulation of CKs and hence increased seed weight. Use of such natural variations in marker assisted breeding could lead to the development of higher yielding soybean varieties. Author Keywords: CKX, Cytokinins, Seed weight, Seed Yield, SNPs, Soybeans
Do birds of a feather flock together
Populations have long been delineated by physical barriers that appear to limit reproduction, yet increasingly genetic analysis reveal these delineations to be inaccurate. The eastern and mid-continent populations of sandhill cranes are expanding ranges which is leading to convergence and warrants investigation of the genetic structure between the two populations. Obtaining blood or tissue samples for population genetics analysis can be costly, logistically challenging, and may require permits as well as potential risk to the study species. Non-invasively collected genetic samples overcome these challenges, but present challenges in terms of obtaining high quality DNA for analysis. Therefore, methods that optimize the quality of non-invasive samples are necessary. In the following thesis, I examined factors affecting DNA quality and quantity obtained from shed feathers and examined population differentiation between eastern and mid-continent sandhill cranes. I found shed feathers are robust to environmental factors, but feather size should be prioritized to increase DNA quantity and quality. Further, I found little differentiation between eastern and mid-continent populations with evidence of high migration and isolation-by-distance. Thus, the two populations are not genetically discrete. I recommend future population models incorporate migration between populations to enhance our ability to successfully manage and reach conservation objectives. Author Keywords: feathers, genetic differentiation, non-invasive DNA, population genetics, population management, sandhill crane (Antigone canadensis)
Mitogenome characterization of the shortnose sturgeon (Acipenser brevirostrum) for international trade validation of aquaculture-reared caviar
Identifying the population origin of aquaculture-reared caviar is crucial for both conservation and management strategies of farmed fish but could also facilitate international trade of a CITES regulated product. Shortnose sturgeon (Acipenser brevirostrum) is the main source of caviar production in Atlantic Canada, from Breviro Caviar Inc. aquaculture facility. Shortnose sturgeon are also listed as a species-at-risk under the Species At Risk Act. Currently there is no genetic method for delineating wild from aquaculture-reared caviar. By targeting the mitochondrial genome (mitogenome) using novel long-range PCR primers and next-generation sequencing (NGS) methods we have successfully sequenced the full mitogenome of 37 shortnose sturgeon. The purpose of this study was to increase the resolution of diagnostic variation among populations and to validate Canadian aquaculture-reared stock from wild US populations. Results provided a previously unobserved novel control region haplotype in high frequency within both the aquaculture-reared and Saint John River wild sample sets. Similar frequencies were observed with whole mitogenome haplotypes. Diagnostic mitochondrial lineage found in high frequency within the captive Breviro Caviar Inc. population has the potential to allow caviar product from Breviro Caviar Inc. to be distinguished from protected US shortnose sturgeon populations. The application of full mitogenomic characterization provides the potential to further resolve differences between aquaculture and natural Canadian shortnose sturgeon stocks, US/Canadian populations and to contribute to future conservation strategies. Future research identifying signatures of selection on the mitogenome between captive and wild populations and across latitudinal gradients found within the species range. These novel methods have produced a proof-of-concept to provide a "farm-to-fork" validation and ecobrand of Breviro Caviar Inc. product and its aquaculture origin to support importation into US caviar markets. Author Keywords: aquaculture, mitogenome, next-generation sequencing, species-at-risk, sturgeon
Evaluating the effects of landscape structure on genetic differentiation and diversity
The structure and composition of the landscape can facilitate or impede gene flow, which can have important consequences because genetically isolated groups of individuals may be prone to inbreeding depression and possible extinction. My dissertation examines how landscape structure influences spatial patterns of genetic differentiation and diversity of American marten (Martes americana) and Canada lynx (Lynx canadensis) in Ontario, Canada, and provides methodological advances useful for landscape geneticists. First, I identified the effects of map boundaries on estimates of landscape resistance, and proposed a solution to the bias: a buffer around the map boundary. Second, I assessed the sensitivity of a network-based estimate of genetic distance, conditional genetic distance, to incomplete sampling. I then used these landscape genetic tools in a pairwise, distance-based analysis of 653 martens genotyped at 12 microsatellite loci. I evaluated whether forest management in Ontario has influenced the genetic structure of martens. Although forest management practices had some impact, isolation by distance best described marten gene flow. Our results suggest that managed forests in Ontario are well connected for marten and do not impede marten gene flow. Finally, I used a site-based analysis of 702 lynx genotyped at 14 microsatellite loci to investigate spatial patterns of genetic diversity and differentiation at the trailing (contracting) edge of the lynx distribution in Ontario. I analyzed harvest records and found that the southern edge of lynx range has contracted by >175 km since the 1970s. I also found that neutral genetic diversity decreased towards the trailing edge, whereas genetic differentiation increased. Furthermore, I found strong correlations between gradients of lynx genetic structure and gradients of climate and land cover in Ontario. My findings suggest that increases in winter air temperature, decreases in snow depth, and loss of suitable habitat will result in further loss of genetic diversity in peripheral populations of lynx. Consequently, the adaptive potential of lynx populations on the southern range periphery could decline. In conclusion, my dissertation demonstrates the varying influences that contemporary landscape structure and climate gradients can have on genetic diversity and differentiation of different species. Author Keywords: Circuitscape, genetic network, landscape genetics, Lynx canadensis, Martes americana, range shift
Gene flow directionality and functional genetic variation among Ontario, Canada Ursus americanus populations.
Rapidly changing landscapes introduce challenges for wildlife management, particularly for large mammal populations with long generation times and extensive spatial requirements. Understanding how these populations interact with heterogeneous landscapes aids in predicting responses to further environmental change. In this thesis, I profile American black bears using microsatellite loci and pooled whole-genome sequencing. These data characterize gene flow directionality and functional genetic variation to understand patterns of dispersal and local adaptation; processes key to understanding vulnerability to environmental change. I show dispersal is positively density-dependent, male biased, and influenced by food productivity gradients suggestive of source-sink dynamics. Genomic comparison of bears inhabiting different climate and forest zones identified variation in genes related to the cellular response to starvation and cold. My thesis demonstrates source-sink dynamics and local adaption in black bears. Population management must balance dispersal to sustain declining populations against the risk of maladaptation under future scenarios of environmental change. Author Keywords: American black bear, Dispersal, Functional Genetic Variation, Gene Flow Directionality, Genomics, Local Adaptation
Selection on functional genes across a flying squirrel (genus Glaucomys) hybrid zone
While hybridization between distinct taxa can have undesirable implications, it can also result in increased genetic variability and potentially, the exchange of adaptive genes or traits. Adaptive variation acquired through introgressive hybridization may be particularly advantageous for species facing rapid environmental change. I investigated a novel, climate change-induced hybrid zone between two flying squirrel species: the southern (Glaucomys volans) and northern (G. sabrinus) flying squirrel. I was interested in the occurrence of hybridization and introgression, the type of selective pressures maintaining the hybrid zone and the potential for adaptive introgression. I found relatively low hybridization and introgression frequencies (1.7% and 2.9% of the population, respectively) and no evidence of selection on hybrids or backcrosses in particular environments. I conclude that the data are more consistent with a hybrid zone maintained by endogenous (environment-independent) selection. I tested for adaptive introgression using two functional genes: IGF-1 and CLOCK. I documented intermediate functional allele frequencies in backcrosses compared to parental populations, suggesting the alleles do not confer fitness advantages in backcrosses. Despite lack of evidence for current adaptive introgression, genetic admixture between G. volans and G. sabrinus may provide adaptive potential should these species face more rapid or drastic environmental change in the future. Author Keywords: adaptive introgression, flying squirrel, Glaucomys sabrinus, Glaucomys volans, hybridization, introgression
Exonic Trinucleotide Microsatellites
Trinucleotide repeats (TNRs) are a class of highly polymorphic microsatellites which occur in neutral and non-neutral loci and may provide utility for individual- and population-identification. Exonic trinucleotide motifs, in particular, offer additional advantages for non-human species that typically utilize dinucleotide microsatellite loci. Specifically, the reduction of technical artifacts, greater separation of alleles and greater specificity of amplification products leading to more efficient multiplexing and cross-taxa utilization. This study aims to identify and characterize polymorphic trinucleotide repeats and conserved primer sequences which are conserved across Cervidae (deer) species and their potential for individual identification in forensic wildlife investigations. Chapter one provides a broad introduction to trinucleotide microsatellites, chapter two deals with data-mining TNRs and chapter three applies the identified TNRs as genetic markers for individual identification. Results demonstrate proof-of-concept that exonic TNRs are capable of giving random match probabilities low enough to be employed in individual identification of evidentiary samples. Author Keywords: DNA typing, Exons, Genetic Markers, Individual Identification, Trinucleotide, Wildlife Forensics
Evaluation of silver nanoparticles (AgNPs) and anti-GD2-AgNP antibody-drug conjugates as novel neuroblastoma therapies
Neuroblastoma (NB) has one of the highest mortality rates in pediatric oncology due to relapsed and refractory disease. Current aggressive multi-modal treatments are inhibited by dose-limiting toxicities and are associated with late-effects and secondary malignancies, emphasizing the necessity for novel therapeutics. Uniquely, most NB cells highly express disialoganglioside (GD2) a cell surface glycolipid that can provide a target for tumour-specific delivery. This study demonstrates a comprehensive evaluation of silver nanoparticles (AgNPs) and the first preliminary evaluation of anti-GD2-AgNP antibody-drug conjugates (ADCs) against NB in vitro. This present study validates the potential for AgNPs as an anti-cancer agent against NB as AgNPs demonstrated preferential toxicity towards NB cells through metabolic inhibition and indicative morphological alterations, while a less tumorigenic cell line demonstrated resistance to AgNP treatment. Therefore, this work identified an AgNP cell-type-dependent cytotoxicity effect. Low conjugation efficiency of the anti-GD2 monoclonal antibody, 14.G2a, to NHS-activated AgNPs failed to exert greater toxicity than the AgNPs alone. Collectively, this thesis provides novel information regarding the anti-cancer effects of AgNPs against NB with recommendations for anti-GD2-AgNP ADCs. Author Keywords: ADC, Chemotherapy, GD2, Neuroblastoma, Silver nanoparticles

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Bell
  • (-) ≠ Greenwood
  • (-) ≠ Anthropology
  • (-) = Genetics
  • (-) ≠ Bertrand, Philip
  • (-) ≠ Currier, Charise A.

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/04/23

Degree Discipline