Graduate Theses & Dissertations


Research and development of synthetic materials for presumptive testing in bloodstain pattern analysis
Chemical presumptive tests are used as the primary detection method for latent bloodstain evidence. This work focuses on developing a forensic blood substitute which mimics whole blood reactivity to a luminol solution commonly used in presumptive testing. Designing safe and accessible materials that mimic relevant properties of blood is a recognized research need in forensic science. Understanding the whole blood dynamics related to reactivity with presumptive testing chemicals is important for developing accurate analogues. Provided in this thesis is a quantitative and qualitative characterization of photoemission from the reaction of a luminol solution to ovine blood. Luminol reactivity of a horseradish peroxidase encapsulated sol-gel polymer was validated against this ovine blood standard. This material, the luminol-reactive forensic blood substitute, is a key deliverable of this research. An optimized protocol for implementing this technology as a reagent control test, and as a secondary school chemistry experiment are presented. This thesis outlines the research and development of a forensic blood substitute as it relates to presumptive testing in bloodstain pattern analysis. Author Keywords: bloodstain pattern analysis, forensic science, luminol, presumptive testing, secondary school education, sol-gel chemistry
Temporal Variability of Coloured Dissolved Organic Matter in the Canada Basin, Arctic Ocean (2007-2017)
This thesis investigated coloured and fluorescent dissolved organic matter in the Canada Basin, Arctic Ocean from 2007 to 2017. The first interannual time-series of its kind in the Canada Basin incorporated the use of EEM-PARAFAC to validate a seven-component model. Statistical temporal tests revealed (1) an increasing protein-like intensity in the upper polar mixed layer (UPML); (2) increasing intensities of humic-like components in the halocline due to increasing freshwater content; and (3) no change in DOM composition in deeper Atlantic waters (AW) congruent with the long residence time of the water mass (> 30 years). The significant decline in sea ice concentration was related to a decrease in humic-like FDOM due to enhanced photodegradation and an increase in protein-like FDOM, likely the results of increased biological activities in surface layers. This research provides evidence that the changes in physical and biological environment in the Arctic regions have already profound impacts on the composition and distribution of FDOM. Author Keywords: absorbance, Arctic Ocean, dissolved organic matter, fluorescence, parallel factor analysis, time-series
effects of Dissolved Organic Matter (DOM) sources on Pb2+, Zn2+ and Cd2+ binding
Metal binding to dissolved organic matter (DOM) determines metal speciation and strongly influences potential toxicity. The understanding of this process, however, is challenged by DOM source variation, which is not always considered by most existing metal speciation models. Source determines the molecular structure of DOM, including metal binding functional groups. This study has experimentally showed that the allochthonous-dominant DOM (i.e. more aromatic and humic) consistently has higher level of Pb binding than the autochthonous-dominant DOM (i.e. more aliphatic and proteinaceous) by more than two orders of magnitude. This source-discrimination, however, is less noticeable for Zn and Cd, although variation still exceeds a factor of four for both metals. The results indicate that metal binding is source-dependent, but the dependency is metal-specific. Accordingly, metal speciation models, such as the Windermere Humic Aqueous Model (WHAM), needs to consider DOM source variations. The WHAM input of active fraction of DOM participating in metal binding (f) is sensitive to DOM source. The commonly-used f = 0.65 substantially overestimated the Pb and Zn binding to autochthonous-dominant DOM, indicating f needs to be adjusted specifically. The optimal f value (fopt) linearly correlates with optical indexes, showing a potential to estimate fopt using simple absorbance and/or fluorescence measurements. Other DOM properties not optically-characterized may be also important to determine fopt, such as thiol, which shows strong affinity to most toxic metals and whose concentrations are appreciably high in natural waters (< 0.1 to 400 nmol L-1). Other analytical techniques rather than Cathodic Stripping Voltammetry (CSV) are required to accurately quantify thiol concentration for DOM with concentration > 1 mg L-1. To better explain the DOM-source effects, the conditional affinity spectrum (CAS) was calculated using a Fully Optimized ContinUous Spectrum (FOCUS) method. This method not only provides satisfactory goodness-of-fit, but also unique CAS solution. The allochthonous-dominant DOM consistently shows higher Pb affinity than autochthonous-dominant DOM. This source-discrimination is not clearly observed for Zn and Cd. Neither the variability of affinity nor capacity can be fully explained by the variability of individual DOM properties, indicating multiple properties may involve simultaneously. Together, the results help improve WHAM prediction of metal speciation, and consequently, benefit geochemical modelling of metal speciation, such as Biotic Ligand Model for predicting metal toxicity. Author Keywords: Dissolved organic matter, Metal binding, Source, Windermere Humic Aqueous Model
origin and ecological function of an ion inducing anti-predator behaviour in Lithobates tadpoles
Chemical cues are used commonly by prey to identify predation risk in aquatic environments. Previous work has indicated that negatively-charged ions of m/z 501 are possibly a kairomone that induces anti-predator responses in tadpoles. This thesis found that this ion species: (i) is produced by injured tadpoles; (ii) exhibits increased spectral intensity with higher tadpole biomass; and (iii) is not produced by starved predators. These results refute the hypothesis that the ion is a kairomone, and rather support its role as an alarm cue released from tadpoles. High resolution mass spectrometry (HR-MS) revealed a unique elemental composition for [M-H]-, m/z 501.2886, of C26H45O7S-. Collision induced dissociation (CID) of ion m/z 501 formed product ions of m/z 97 and m/z 80, HSO4- and SO3-, respectively, indicating the presence of sulfate. Green frog (Lithobates clamitans) tadpoles exposed to m/z 501, and an industrial analogue, sodium dodecyl sulphate (NaC12H25O4S), exhibited similar anti-predator responses, thereby suggesting the potential role of organic sulfate as a tadpole behavioural alterant. Author Keywords: Alarm cue, Amphibian, Chemical Ecology, Mass spectrometry, Predator-prey interactions


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Materials Science
  • (-) ≠ Southeast Asian studies
  • (-) = Chemistry