Graduate Theses & Dissertations

Pages

Role of Dielectric Screening in SrTiO3-Based Interfaces
We build a theoretical model for exploring the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 (STO) and a number of perovskite materials including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation, and the dielectric polarization via a Landau-Devonshire free energy that incorporates STO's strongly nonlinear, nonlocal, field-, and temperature-dependent dielectric response. We consider three models for the dielectric polarization at the interface: an ideal-interface model in which the interface has the same permittivity as the bulk, a dielectric dead-layer model in which the interface has permittivity lower that the bulk, and an interfacial-strain model in which the strain effects are included. The ideal-interface model band structure comprises a mix of quantum 2D states that are tightly bound to the interface, and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the STO substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. We speculate that the quasi-3D tails form the low- density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements. Multiple experiments have observed a sharp Lifshitz transition in the band structure of STO interfaces as a function of applied gate voltage. To understand this transition, we first propose a dielectric dead-layer model. It successfully predicts the Lifshitz transition at a critical charge density close to the measured one, but does not give a complete description for the transition. Second, we use an interfacial-strain model in which we consider the electrostrictive and flexoelectric coupling between the strain and polarization. This coupling generates a thin polarized layer whose direction reverses at a critical density. The transition occurs concomitantly with the polarization reversal. In addition, we find that the model captures the two main features of the transition: the transition from one occupied band to multiple occupied bands, and the abrupt change in the slope of lowest energy band with doping. Author Keywords:
Synthesis of Lipid Based Polyols from 1-butene Metathesized Palm Oil for Use in Polyurethane Foam Applications
This thesis explores the use of 1-butene cross metathesized palm oil (PMTAG) as a feedstock for preparation of polyols which can be used to prepare rigid and flexible polyurethane foams. PMTAG is advantageous over its precursor feedstock, palm oil, for synthesizing polyols, especially for the preparation of rigid foams, because of the reduction of dangling chain effects associated with the omega unsaturated fatty acids. 1-butene cross metathesis results in shortening of the unsaturated fatty acid moieties, with approximately half of the unsaturated fatty acids assuming terminal double bonds. It was shown that the associated terminal OH groups introduced through epoxidation and hydroxylation result in rigid foams with a compressive strength approximately 2.5 times higher than that of rigid foams from palm and soybean oil polyols. Up to 1.5 times improvement in the compressive strength value of the rigid foams from the PMTAG polyol was further obtained following dry and/or solvent assisted fractionation of PMTAG in order to reduce the dangling chain effects associated with the saturated components of the PMTAG. Flexible foams with excellent recovery was achieved from the polyols of PMTAG and the high olein fraction of PMTAG indicating that these bio-derived polyurethane foams may be suitable for flexible foam applications. PMTAG polyols with controlled OH values prepared via an optimized green solvent free synthetic strategy provided flexible foams with lower compressive strength and higher recovery; i.e., better flexible foam potential compared to the PMTAG derived foams with non-controlled OH values. Overall, this study has revealed that the dangling chain issues of vegetable oils can be addressed in part using appropriate chemical and physical modification techniques such as cross metathesis and fractionation, respectively. In fact, the rigidity and the compressive strength of the polyurethane foams were in very close agreement with the percentage of terminal hydroxyl and OH value of the polyol. The results obtained from the study can be used to convert PMTAG like materials into industrially valuable materials. Author Keywords: Compressive Strength, Cross Metathesis, Fractionation, Polyols, Polyurethane Foams, Vegetable Oils
silicon sol-gel approach to the development of forensic blood substitutes
The research and development of synthetic blood substitutes is a reported need within the forensic community. This work contributes to the growing body of knowledge in bloodstain pattern analysis by offering a materials science approach to designing, producing and testing synthetic forensic blood substitutes. A key deliverable from this research is the creation of a robust silicon-based material using the solution-gelation technique that has been validated for controlled passive drip and spatter simulation. The work investigates the physical properties (viscosity, surface tension and density) of forensic blood substitute formulations and describes the similarity in the spreading dynamics of the optimized material to whole human blood. It then explores how blood and other fluids behave in impact simulation using high-speed video analysis and supports the use of the optimized material for spatter simulation. Finally, the work highlights the practical value of the material as an educational tool for both basic and advanced bloodstain experimentation and training. Author Keywords: bloodstain pattern analysis, forensic blood substitutes, high-speed video analysis, silicon solution-gelation chemistry, thin-film deposition, training and education
Phosphoric Acid Chemically Activated Waste Wood
Activated Carbon (AC) is commonly produced by gasification, but there has been increasing interest in chemical activation due to its lower activation temperatures and higher yields. Phosphoric acid, in particular, succeeds in both these areas. Phosphoric acid activated carbon (PAC) can be environmentally sustainable, and economically favourable, when the phosphoric acid used in the activation is recycled. This thesis describes the digestion and activation of waste wood using phosphoric acid, as well as methods used to recover phosphoric acid, functionalize the produced activated carbon with iron salts and then test their efficacy on the adsorption of target analytes, selenite and selenate. In order to achieve an efficient phosphoric acid based chemical activation, further understanding of the activation process is needed. A two-step phosphoric acid activation process with waste wood feed stock was examined. The filtrate washes of the crude product and the surface composition of the produced PAC were characterized using X-ray Photoelectron Spectroscopy (XPS), Fourier Transform-Infrared spectroscopy (FT-IR), Ion Chromatography (IC), and 31P Nuclear Magnetic Resonance (NMR). XPS of the unwashed PAC contained 13.3 atomic percent phosphorous, as phosphoric acid, while the washed sample contained 1.4 atomic percent phosphorous as PO43-, and P2O74-. Using 31P NMR, phosphoric acid was identified as the primary phosphorous species in the acidic 0.1 M HCl washings, with pyrophosphates also appearing in the second 0.1 M NaOH neutralizing wash, and finally a weak signal from phosphates with an alkyl component also appearing in the DI wash. IC showed high concentrations of phosphoric acid in the 0.1 M HCl wash with progressively lower concentrations in both the NaOH and DI washes. Total phosphoric acid recovery was 96.7 % for waste wood activated with 25 % phosphoric acid, which is higher than previous literature findings for phosphoric acid activation. The surface areas of the PAC were in the 1500-1900 m2g-1 range. Both pre and post activation impregnation of iron salts resulted in iron uptake. Pre-activation resulted in only iron(III) speciation while post-activation impregnation of iron(II)chloride did result in iron(II) forming on the PAC surface. The pre-activated impregnated PAC showed little to no adsorption of selenite and selenate. The post-activation impregnated iron(II)chloride removed up to 12.45 ± 0.025 mg selenium per g Iron-PAC. Competitive ions such as sulfate and nitrate had little effect on selenium adsorption. Phosphate concentration did affect the uptake. At 250 ppm approximately 75 % of adsorption capacity of both the selenate and the selenite solutions was lost, although selenium was still preferentially adsorbed. Peak adsorption occurred between a pH of 4 and 11, with a complete loss of adsorption at a pH of 13. Author Keywords: Activated Carbon, doping, Iron, phosphoric acid, selenium
"Multimodal Contrast" from the Multivariate Analysis of Hyperspectral CARS Images
The typical contrast mechanism employed in multimodal CARS microscopy involves the use of other nonlinear imaging modalities such as two-photon excitation fluorescence (TPEF) microscopy and second harmonic generation (SHG) microscopy to produce a molecule-specific pseudocolor image. In this work, I explore the use of unsupervised multivariate statistical analysis tools such as Principal Component Analysis (PCA) and Vertex Component Analysis (VCA) to provide better contrast using the hyperspectral CARS data alone. Using simulated CARS images, I investigate the effects of the quadratic dependence of CARS signal on concentration on the pixel clustering and classification and I find that a normalization step is necessary to improve pixel color assignment. Using an atherosclerotic rabbit aorta test image, I show that the VCA algorithm provides pseudocolor contrast that is comparable to multimodal imaging, thus showing that much of the information gleaned from a multimodal approach can be sufficiently extracted from the CARS hyperspectral stack itself. Author Keywords: Coherent Anti-Stokes Raman Scattering Microscopy, Hyperspectral Imaging, Multimodal Imaging, Multivariate Analysis, Principal Component Analysis, Vertex Component Analysis
Investigation of Using Phase Change Materials for Thermal Energy Storage in Adiabatic Compressed Air Energy Storage
There is an increasing global need for grid scale electrical energy storage to handle the implementation of intermittent renewable energy sources. Adiabatic compressed air energy storage is an emerging technology with similar performance to pumped hydro except it has the issue of heat loss during the compression stage. Previously, it has been considered to use sensible heat storage materials to store the heat created by compression in a thermal energy storage unit until energy is required, and then transfer the heat back to the air. This research proposes to instead use phase change materials to store the heat of compression, as this will reduce entropy generation and maximize roundtrip exergy efficiency. Different configurations and placements of the phase change materials are considered and exergy analyses are presented. The thermodynamic equations are derived and optimal setup conditions including amount of latent heat and melting temperatures are calculated. Author Keywords: Compressed Air Energy Storage, Energy Storage, Exergy, Phase Change Materials
Heavy Rydberg Photo-dissociation Cross-section Calculations and Experimental Progress Towards Cold Collisions in Lithium
This thesis is divided into two parts, each of which supports constructing and using a lithium magneto-optical trap for cold collision studies: Part I One outgoing channel of interest from cold collisions is the production of ion pairs. We describe an effective method for calculating bound-to-continuum cross-sections for charged binary systems by examining transitions to states above the binding energy that become bound when the system is placed within an infinite spherical well. This approach is verified for ionization of a hydrogen atom, and is then applied to the heavy Rydberg system Li+...I-. Part II A wavemeter previously built in the lab is redesigned for increased reliability and ease of use by replacing the optical hardware with a rocker system, which can be aligned in mere minutes rather than half a day as was previously the case. The new wavemeter has been tested through saturated absorption spectroscopy of lithium. Author Keywords: cross-section, dissociation, lithium, magneto-optical trap, Michelson, wavemeter

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Biogeochemistry
  • (-) = Materials Science

Filter Results

Date

2010 - 2020
(decades)
Specify date range: Show
Format: 2020/01/20

Author Last Name

Show more

Last Name (Other)

Show more