Graduate Theses & Dissertations


Utilizing Class-Specific Thresholds Discovered by Outlier Detection
We investigated if the performance of selected supervised machine-learning techniques could be improved by combining univariate outlier-detection techniques and machine-learning methods. We developed a framework to discover class-specific thresholds in class probability estimates using univariate outlier detection and proposed two novel techniques to utilize these class-specific thresholds. These proposed techniques were applied to various data sets and the results were evaluated. Our experimental results suggest that some of our techniques may improve recall in the base learner. Additional results suggest that one technique may produce higher accuracy and precision than AdaBoost.M1, while another may produce higher recall. Finally, our results suggest that we can achieve higher accuracy, precision, or recall when AdaBoost.M1 fails to produce higher metric values than the base learner. Author Keywords: AdaBoost, Boosting, Classification, Class-Specific Thresholds, Machine Learning, Outliers
SPAF-network with Saturating Pretraining Neurons
In this work, various aspects of neural networks, pre-trained with denoising autoencoders (DAE) are explored. To saturate neurons more quickly for feature learning in DAE, an activation function that offers higher gradients is introduced. Moreover, the introduction of sparsity functions applied to the hidden layer representations is studied. More importantly, a technique that swaps the activation functions of fully trained DAE to logistic functions is studied, networks trained using this technique are reffered to as SPAF-networks. For evaluation, the popular MNIST dataset as well as all \(3\) sub-datasets of the Chars74k dataset are used for classification purposes. The SPAF-network is also analyzed for the features it learns with a logistic, ReLU and a custom activation function. Lastly future roadmap is proposed for enhancements to the SPAF-network. Author Keywords: Artificial Neural Network, AutoEncoder, Machine Learning, Neural Networks, SPAF network, Unsupervised Learning
An Investigation of Load Balancing in a Distributed Web Caching System
With the exponential growth of the Internet, performance is an issue as bandwidth is often limited. A scalable solution to reduce the amount of bandwidth required is Web caching. Web caching (especially at the proxy-level) has been shown to be quite successful at addressing this issue. However as the number and needs of the clients grow, it becomes infeasible and inefficient to have just a single Web cache. To address this concern, the Web caching system can be set up in a distributed manner, allowing multiple machines to work together to meet the needs of the clients. Furthermore, it is also possible that further efficiency could be achieved by balancing the workload across all the Web caches in the system. This thesis investigates the benefits of load balancing in a distributed Web caching environment in order to improve the response times and help reduce bandwidth. Author Keywords: adaptive load sharing, Distributed systems, Load Balancing, Simulation, Web Caching
This thesis focuses on the design of a modelling framework consisting of loose-coupling of a sequence of spatial and process models and procedures necessary to predict future flood events for the years 2030 and 2050 in Tabasco Mexico. Temperature and precipitation data from the Hadley Centers Coupled Model (HadCM3), for those future years were downscaled using the Statistical Downscaling Model (SDSM4.2.9). These data were then used along with a variety of digital spatial data and models (current land use, soil characteristics, surface elevation and rivers) to parameterize the Soil Water Assessment Tool (SWAT) model and predict flows. Flow data were then input into the Hydrological Engineering Centers-River Analysis System (HEC-RAS) model. This model mapped the areas that are expected to be flooded based on the predicted flow values. Results from this modelling sequence generate images of flood extents, which are then ported to an online tool (ADAPT) for display. The results of this thesis indicate that with current prediction of climate change the city of Villahermosa, Tabasco, Mexico, and the surrounding area will experience a substantial amount of flooding. Therefore there is a need for adaptation planning to begin immediately. Author Keywords: Adaptation Planning, Climate Change, Extreme Weather Events, Flood Planning, Simulation Modelling
An Investigation of the Impact of Big Data on Bioinformatics Software
As the generation of genetic data accelerates, Big Data has an increasing impact on the way bioinformatics software is used. The experiments become larger and more complex than originally envisioned by software designers. One way to deal with this problem is to use parallel computing. Using the program Structure as a case study, we investigate ways in which to counteract the challenges created by the growing datasets. We propose an OpenMP and an OpenMP-MPI hybrid parallelization of the MCMC steps, and analyse the performance in various scenarios. The results indicate that the parallelizations produce significant speedups over the serial version in all scenarios tested. This allows for using the available hardware more efficiently, by adapting the program to the parallel architecture. This is important because not only does it reduce the time required to perform existing analyses, but it also opens the door to new analyses, which were previously impractical. Author Keywords: Big Data, HPC, MCMC, parallelization, speedup, Structure
Self-Organizing Maps and Galaxy Evolution
Artificial Neural Networks (ANN) have been applied to many areas of research. These techniques use a series of object attributes and can be trained to recognize different classes of objects. The Self-Organizing Map (SOM) is an unsupervised machine learning technique which has been shown to be successful in the mapping of high-dimensional data into a 2D representation referred to as a map. These maps are easier to interpret and aid in the classification of data. In this work, the existing algorithms for the SOM have been extended to generate 3D maps. The higher dimensionality of the map provides for more information to be made available to the interpretation of classifications. The effectiveness of the implementation was verified using three separate standard datasets. Results from these investigations supported the expectation that a 3D SOM would result in a more effective classifier. The 3D SOM algorithm was then applied to an analysis of galaxy morphology classifications. It is postulated that the morphology of a galaxy relates directly to how it will evolve over time. In this work, the Spectral Energy Distribution (SED) will be used as a source for galaxy attributes. The SED data was extracted from the NASA Extragalactic Database (NED). The data was grouped into sample sets of matching frequencies and the 3D SOM application was applied as a morphological classifier. It was shown that the SOMs created were effective as an unsupervised machine learning technique to classify galaxies based solely on their SED. Morphological predictions for a number of galaxies were shown to be in agreement with classifications obtained from new observations in NED. Author Keywords: Galaxy Morphology, Multi-wavelength, parallel, Self-Organizing Maps


Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Metcalfe
  • (-) = Computer science
  • (-) ≠ Medical imaging

Filter Results


2011 - 2031
Specify date range: Show
Format: 2021/10/24