Graduate Theses & Dissertations

Pages

Hybridization Dynamics between Wolves and Coyotes in Central Ontario
Eastern wolves (Canis lycaon) have hybridized extensively with coyotes (C. latrans) and gray wolves (C. lupus) and are listed as a `species of special concern' in Canada. Previous studies have not linked genetic analysis with field data to investigate the mechanisms underlying Canis hybridization. Accordingly, I studied genetics, morphology, mortality, and behavior of wolves, coyotes, and hybrids in and adjacent to Algonquin Provincial Park (APP), Ontario. I documented 3 genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves, and coyotes. I also documented a substantial number of hybrids (36%) that exhibited intermediate morphology relative to parental types. I found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Next, I studied intrinsic and extrinsic factors influencing survival and cause-specific mortality of canids in the hybrid zone. I found that survival was poor and harvest mortality was high for eastern wolves in areas adjacent to APP compared with other sympatric Canis types outside of APP and eastern wolves within APP. Contrary to previous studies of wolves and coyotes elsewhere, I hypothesized that all Canis types exhibit a high degree of spatial segregation in the Ontario hybrid zone. My hypothesis was supported as home range overlap and shared space use between neighboring Canis packs of all ancestry classes were low. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs and exacerbate hybridization. Canids outside APP modified their use of roads between night and day strongly at high road densities (selecting roads more at night), whereas they responded weakly at lower road densities (generally no selection). Individuals that survived exhibited a highly significant relationship between the difference in their night and day selection of roads and availability of roads, whereas those that died showed a weaker, non-significant response. My results suggest that canids in the unprotected landscape outside APP must balance trade-offs between exploiting benefits associated with secondary roads while mitigating risk of human-caused mortality. Overall, my results suggest that the distinct eastern wolf population of APP is unlikely to expand numerically and/or geographically under current environmental conditions and management regulations. If expansion of the APP eastern wolf population (numerically and in terms of its geographic distribution) is a conservation priority for Canada and Ontario, additional harvest protection in areas outside of APP may be required. If additional harvest protection is enacted, a detailed study within the new areas of protection would be important to document specific effects on eastern wolf population growth. Author Keywords: Canis, coyotes, eastern wolves, hybridization, resource selection, survival
Effects of Silver Nanoparticles on Lake Bacterioplankton
Silver nanoparticles (AgNP) released into aquatic environments could threaten natural bacterial communities and ecosystem services they provide. We examined natural lake bacterioplankton communities' responses to different exposures (pulse vs chronic) and types (citrate and PVP) of AgNPs at realistic environmental conditions using a mesocosm study at the Experimental Lakes Area. An in situ bioassay examined interactions between AgNPs and phosphorus loading. Bacterial communities exposed to high AgNP concentrations regardless of exposure or capping agent type accumulated silver. We observed increases in community production during additions of polyvinylpyrrolidone (PVP) -capped AgNPs and that site and nutrient-specific conditions are important to AgNPs toxicology in aquatic systems. Toxicological effects of AgNP are attenuated in natural conditions and differ from results from laboratory studies of AgNP toxicity. Our results demonstrate more studies are needed to fully assess the risk posed by these novel chemicals to the environment. This work could be useful in forming risk assessment policies which are largely based on lab studies and typically demonstrate strong toxic effects. Author Keywords: bacterial production, bacterioplankton communities, ecological stoichiometry, Experimental Lakes Area, mesocosms, silver nanoparticles
mechanistic analysis of density dependence in algal population dynamics
Population density regulation is a fundamental principle in ecology, however there remain several unknowns regarding the functional expression of density dependence. One prominent view is that the patterns by which density dependence is expressed are largely fixed across a species, irrespective of environmental conditions. Our study investigated the expression of density dependence in Chlamydomonas reinhartti grown under a gradient of nutrient densities, and hypothesized that the relationship between per capita growth rate (pgr) and population density would vary from concave-up to concave-down as nutrients became less limiting. Contrary to prediction, we found that the relationship between a population's pgr and density became increasingly concave-up as nutrient levels increased. Our results suggest that density dependence is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density regulation depends extensively on local conditions. Population growth suppression may be attributable to environments with high intraspecific competition. Additional work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time. Author Keywords: Chlamydomonas reinhartti, density dependence, logistic model, population dynamics, single species growth, theta-logistic equation
Dynamics and Mechanisms of Community Assembly in a Mined Carolinian Peatland
Theoretical work on community recovery, development, stability, and resistance to species invasions has outpaced experimental field research. There is also a need for better integration between ecological theory and the practice of ecological restoration. This thesis investigates the dynamics of community assembly following peat mining and subsequent restoration efforts at Canada's most southerly raised bog. It examines mechanisms underlying plant community changes and tests predictions arising from the Dynamic Environmental Filter Model (DEFM) and the Fluctuating Resource Hypothesis (FRH). Abiotic, biotic and dispersal filters were modified to test a conceptual model of assembly for Wainfleet Bog. Hydrology was manipulated at the plot scale across multiple nutrient gradients, and at the whole bog scale using peat dams. Trends in time series of hydrological variables were related to restoration actions and uncontrolled variables including precipitation, evapotranspiration and arrival of beaver. Impacts of a changing hydrology on the developing plant community were compared with those from cutting the invasive Betula pendula. Transplanting experiments were used to examine species interactions within primary and secondary successional communities. Seedlings of B. pendula and the native Betula papyrifera were planted together across a peat volumetric water content (VWC) gradient. Impacts of beaver dams were greater than those of peat dams and their relative importance was greatest during periods of drought. Cutting of B.pendula had little effect on the secondary successional plant community developing parallel to blocked drains. Phosphorus was the main limiting nutrient with optimum levels varying substantially between species. Primary colonisers formed a highly stable, novel plant community. Stability was due to direct and indirect facilitative interactions between all species. Reduction in frost heaving was the major mechanism behind this facilitation. Interactions within the secondary successional community were mostly competitive, driven by light and space availability. However, restricted dispersal rather than competition limited further species recruitment. Predictions based on the DEFM were partially correct. A splitting of this model's biotic filter into competition and facilitation components is proposed. There was little support for the FRH based on nutrient levels and VWC. B. pendula had higher germination and growth rates, tolerance to a wider range of peat VWCs and a greater resistance to deer browsing than native birch. Peat mining, combined with restoration actions and the arrival of beaver has moved much of the bog back to an earlier successional stage circa 350+ years BP. Evidence points to B. pendula being a "back-seat driver" in the ecosystem recovery process. Indirect facilitation of a native by an exotic congener, mediated through herbivory, has not been described previously. Shifts in relative contributions of facilitation, competition and dispersal limitations to community assembly may be useful process-oriented measures for gauging progress in restoration. Author Keywords: Betula pendula, community assembly, competition, facilitation, peatland, restoration
Assessing the population genetic structure of the endangered Cucumber tree (Magnolia acuminata) in southwestern Ontario using nuclear and chloroplast genetic markers.
Magnolia acuminata (Cucumber tree) is the only native Magnolia in Canada, where it is both federally and provincially listed as endangered.Magnolia acuminata in Canada can be found inhabiting pockets of Carolinian forest within Norfolk and Niagara regions of southwestern Ontario. Using a combination of nuclear and chloroplast markers, this study assessed the genetic diversity and differentiation of M. acuminata in Canada, compared to samples from the core distribution of this species across the United States. Analyses revealed evidence of barriers to dispersal and gene flow among Ontario populations, although genetic diversity remains high and is in fact comparable to levels of diversity estimated across the much broader range of M. acuminata in the USA. When examining temporal differences in genetic diversity, our study found that seedlings were far fewer than mature trees in Ontario, and in one site in particular, diversity was lower in seedlings than that of the adult trees. This study raises concern regarding the future viability of M. acuminata in Ontario, and conservation managers should factor in the need to maintain genetic diversity in young trees for the long-term sustainability of M. acuminata in Ontario. Author Keywords: conservation genetics, cpDNA, forest fragmentation, Magnolia acuminata, microsatellites, population genetic structure
CO2 dynamics of tundra ponds in the low-Arctic Northwest Territories, Canada
Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d-1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the Arctic's atmospheric CO2 concentrations now and in the future. Author Keywords: Arctic, Arctic Ponds, Carbon dioxide, Carbon Fluxes, Climate Change, NDIR sensor
regional comparison of the structure and function of benthic macroinvertebrate communities within Precambrian Shield and St. Lawrence lowland lakes in south-central Ontario
Benthic macroinvertebrtes (BMI) are functionally important in aquatic ecosystems; as such, knowledge of their community structure and function is critical for understanding these systems. BMI were sampled from ten lakes in each of two regions of south-central Ontario to investigate which chemical and physical variables could be shaping their community structure and function. Ten Precambrian Shield lakes in the Muskoka-Haliburton region, and ten St Lawrence lowland lakes in the Kawartha lakes region were sampled. These lakes are geologically and chemically distinct, creating natural chemical and physical gradients within and between both regions. Community function was assessed using stable isotope analysis to elucidate carbon transfer dynamics (δ13C) and food web interactions (δ15N). It was predicted that the BMI from Shield lakes would have a δ13C signature indicative of allochthonous carbon subsidies, whereas the lowland lake BMI signatures would reflect autochthonous production. Additionally, it was predicted that the food web length (measured in δ15N units) would be different in Shield and lowland lakes. Both of these predictions were supported; however, the data indicate that δ13C signatures are more likely influenced by catchment geology (represented by bicarbonate concentration) than the extent of allochthony. The best predictor of food web length was found to be region. To assess BMI community structure, taxonomic richness, %EPT (% Ephemeroptera, Plecoptera, Trichoptera; a water quality index), and distribution of functional feeding groups were examined. Based on chemistry it was expected that the Shield lakes would be more speciose, and of greater water quality (relatively lower nutrient levels). These predictions were rejected; since there were no significant regional differences in taxonomic richness or biologically inferred water quality (%EPT). However, sediment size was found to best explain the variability in both metrics, with greater richness and %EPT found at sites with medium and small substrates than those with large substrates. Significant regional differences were found in the distribution of functional feeding groups. Most notably, there were significantly greater proportions of scrapers and shredders in the lowland and Shield lakes, respectively. Based on the feeding mechanisms of these invertebrates it can be inferred that allochthonous subsidies are likely of greater importance to Shield lake BMI communities than those of the lowland lakes; supporting the carbon transfer prediction. These findings provide insight about the structure and function of BMI communities from two dominant lake types in Ontario, and could be useful when determining how future chemical and physical changes will impact these communities. Author Keywords: benthic macroinvertebrates, community function, community structure, Precambrian Shield, stable isotopes, St. Lawrence lowlands
Hydroclimatic and spatial controls on stream nutrient export from forested catchments
Winter nutrient export from forested catchments is extremely variable from year-to-year and across the landscape of south-central Ontario. Understanding the controls on this variability is critical, as what happens during the winter sets up the timing and nature of the spring snowmelt, the major period of export for water and nutrients from seasonally snow-covered forests. Furthermore, winter processes are especially vulnerable to changes in climate, particularly to shifts in precipitation from snow to rain as air temperatures rise. The objective of this thesis was to assess climatic and topographic controls on variability in stream nutrient export from a series of forested catchments in south-central Ontario. The impacts of climate on the timing and magnitude of winter stream nutrient export, with particular focus on the impact of winter rain-on-snow (ROS) events was investigated through a) analysis of long-term hydrological, chemical and meteorological records and b) high frequency chemical and isotopic measurements of stream and snow samples over two winters. The relationship between topography and variability in stream chemistry among catchments was investigated through a) a series of field and laboratory incubations to measure rates and discern controls on nitrogen mineralization and nitrification and b) analysis of high resolution spatial data to assess relationships between topographic metrics and seasonal stream chemistry. Warmer winters with more ROS events were shown to shift the bulk of nitrate (NO3-N) export earlier in the winter at the expense of spring export; this pattern was not observed in other nutrients [i.e. dissolved organic carbon (DOC), total phosphorus (TP), sulphate (SO4), calcium (Ca)]. Hydrograph separation revealed the majority of ROS flow came from baseflow, but the NO3-N concentrations in rainfall and melting snow were so high that the majority of NO3-N export was due to these two sources. Other nutrient concentrations did not show such a great separation between sources, and thus event export of these nutrients was not as great. Proportionally, catchments with varying topography responded similarly to ROS events, but the absolute magnitude of export varied substantially, due to differences in baseflow NO3-N concentrations. Field and laboratory incubations revealed differences in rates of net NO3-N production between wetland soils and upland soils, suggesting that topographic differences amongst catchments may be responsible for differences in baseflow NO3-N. Spatial analysis of digital elevation models revealed strong relationships between wetland coverage and DOC and dissolved organic nitrogen (DON) concentrations in all seasons, but relationships between topography and NO3-N were often improved by considering only the area within 50 or 100m of the stream channel. This suggests nutrient cycling processes occurring near the stream channel may exert a stronger control over NO3-N stream outflow chemistry. Overall, topography and climate exert strong controls over spatial and temporal variability in stream chemistry at forested catchments; it is important to consider the interaction of these two factors when predicting the effects of future changes in climate or deposition. Author Keywords: biogeochemistry, forest, nitrate, south-central Ontario, stream chemistry, winter
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish
Models of partitioning, uptake, and toxicity of neutral organic chemicals in fish Alena Kathryn Davidson Celsie A novel dynamic fugacity model is developed that simulates the uptake of chemicals in fish by respiration as applies in aquatic toxicity tests. A physiologically based toxicokinetic model was developed which calculates the time-course of chemical distribution in four tissue compartments in fish, including metabolic biotransformation in the liver. Toxic endpoints are defined by fugacity reaching a 50% mortality value. The model is tested against empirical data for the uptake of pentachloroethane in rainbow trout and from naphthalene and trichlorobenzene in fathead minnows. The model was able to predict bioconcentration and toxicity within a factor of 2 of empirical data. The sensitivity to partition coefficients of computed whole-body concentration was also investigated. In addition to this model development three methods for predicting partition coefficients were evaluated: lipid-fraction, COSMOtherm estimation, and using Abraham parameters. The lipid fraction method produced accurate tissue-water partitioning values consistently for all tissues tested and is recommended for estimating these values. Results also suggest that quantum chemical methods hold promise for predicting the aquatic toxicity of chemicals based only on molecular structure. Author Keywords: COSMOtherm, fish model, fugacity, Partition coefficient, tissue-water, toxicokinetics
Absorbance and Fluorescence Characteristics of Dissolved Organic Matter in North Atlantic, Pacific and Arctic Oceans
This thesis was designed to quantify absorbance and fluorescence characteristics of dissolved organic matter (DOM) in North Atlantic, Pacific and Arctic Oceans. DOM was described in water masses of distinct sources and formation pathways as well as in regions where environmental forcings such as deep water upwelling, enhanced biological activity and receipt of freshwater discharge were prevalent. Influence of sea ice on DOM in Beaufort Sea mixed layer (0 to 30 m) seawater was investigated based on sea ice extent as well as freshwater fractions of meteoric (fmw) and sea ice melt water (fsim) calculated from oxygen isotope ratio (δ18O). The effect of DOM exposure to simulated solar radiation was also assessed to determine the resilience of fluorescent fractions of DOM to photodegradation. This research aims to further our ability to trace DOM in marine environments and better understand its transformation pathways and predict its fate as part of the oceanic carbon cycle in a changing climate. Author Keywords: Absorbance, Arctic Ocean, Dissolved organic matter, Fluorescence, Parallel Factor Analysis, Sea Ice
EVALUATION OF HAYFIELD MANAGEMENT STRATEGIES AND BOBOLINK TERRITORIAL HABITAT IN SOUTHERN ONTARIO
I implemented three hayfield management regimens in southern Ontario (a typical schedule at the farmer`s discretion, a delayed first harvest after July 14, and an early first harvest before June 1 with 65 days before second harvest), and evaluated the costs/benefits to farmers regarding hay quality and feasibility, and to Bobolinks (Dolichonyx oryzivorus) regarding reproductive activity and phenology. Typical management resulted in little to no Bobolink reproductive success, and early harvested sites were not (re)colonized. On delayed harvest sites Bobolinks experienced high reproductive success, but hay quality fell below ideal protein levels for most cattle before harvest. I also examined the habitat features Bobolinks use as the basis for establishing territories and associations between Bobolink territory size and habitat quality. I compared vegetation structure, patch size, and prey abundance between small and large territories. Small territories typically occurred on smaller fields with more preferred vegetation characteristics and greater prey abundance. Author Keywords: agro-ecosystem, Bobolink, Dolichonyx oryzivorus, grassland birds, hayfield management
Genome annotation, gene characterization, and the functional analysis of natural antisense transcripts in the fungal plant pathogen Ustilago maydis
Ustilago maydis (DC) Corda is the causal agent of 'common smut of corn'. Completion of the U. maydis lifecycle is dependent on development inside its host, Zea mays. Symptoms of U. maydis infection include chlorosis and the formation of tumours on all aerial corn tissues. Within the tumours, thick-walled diploid teliospores form; these are the reproductive and dispersal agent for the fungus. U. maydis is the model to study basidiomycete biotrophic plant-pathogen interactions. It holds this status in part because of the completely sequenced 20.5 Mb genome; however, thorough genome annotation is required to fully realize the value of this resource. The research presented here improved U. maydis genome annotation through the analysis of cDNA library sequences and comparative genomics. These analyses identified and characterized pathogenesis-related genes, and identified putative meiosis genes. This enabled the use of U. maydis as a model for investigating 'host-induced' meiosis. Further, the cDNA library analyses identified non-coding RNAs (ncRNAs) and natural antisense transcripts (NATs). NATs are endogenous RNA molecules with regions complementary to a protein-coding transcript. Although NATs have been identified in a wide variety of mammals, plants, and fungi, very few have been functionally characterized. Over 200 U. maydis NATs were annotated by analyzing full-length cDNA sequences. NAT structural features were characterized. Strand-specific RT-PCR was used to detect NATs in U. maydis and in a related smut fungus, U. hordei. The data supported a common role for NATs in smut teliospore development, independent of the RNA interference pathway. Analysis of the expression of one U. maydis NAT, as-um02151, in haploid cells, led to a model for NAT function in U. maydis during teliospore dormancy. This model proposed NATs facilitate the maintenance of stored mRNAs through the formation of double-stranded RNA. In testing this model, it was determined that the deletion of two separate upstream regulatory regions, one of which contained a ncRNA (ncRNA1), altered NAT levels and decreased pathogenesis. These studies strengthened U. maydis as a model organism, and began the functional investigation of NATs in U. maydis, which identified a new class of fungal pathogenesis genes. Author Keywords: cDNA library analysis, genome annotation, mRNA stability, natural antisense transcripts, pathogenesis, Ustilago maydis

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) = Environmental and Life Sciences

Filter Results

Date

2003 - 2033
(decades)
Specify date range: Show
Format: 2023/03/30