Graduate Theses & Dissertations

Pages

Development and Use of Passive Samplers for Monitoring Dissolved and Nanoparticulate Silver in the Aquatic Environment
Silver nanoparticles (nAg) are the largest and fastest growing class of nanomaterials, and are a concern when released into aquatic environments even at low μg L-1+). Diffusive gradient in thin films (DGT) with a thiol-modified resin were used to detect labile silver and carbon nanotubes (CNT-sampler) were used to measure nAg. Laboratory uptake experiments in lake water provided an Ag+ DGT diffusion coefficient of 3.09 x 10 -7 cm2s-1 and CNT sampling rates of 24.73, 5.63, 7.31 mL day-1, for Ag+, citrate-nAg and PVP-nAg, respectively. The optimized passive samplers were deployed in mesocosms dosed with nAg. DGT samplers provided estimated Ag+ concentrations ranging from 0.15 to 0.98 μg L-1 and CNT-samplers provided nAg concentrations that closely matched measured concentrations in water filtered at 0.22 μm. Author Keywords: ICP-MS, mesocosms, nanoparticles, nanosilver, passive sampling
Detecting anti-estrogens and anti-androgens in surface waters impacted by municipal wastewater discharges and agricultural runoff
This study focused on detecting 22 target anti-estrogenic and anti-androgenic compounds in surface waters influenced by both discharges of municipal wastewater and agricultural runoff in Canada and Argentina. Polar organic chemical integrative samplers (POCIS) were used to monitor the target compounds in surface waters. The removals of the target compounds in a municipal wastewater treatment plant (WWTP) in Canada were also evaluated. In both Canada and Argentina pesticides with potential anti-estrogenic and anti-androgenic activities were detected in the surface waters. The highest concentrations were found in Argentina (up to 1010 ng L-1) in areas impacted by heavy agricultural practices. Cyproterone acetate and bicalutamide were the only two anti-cancer drugs detected only at the Canadian study site, the Speed River, ON. In the Guelph WWTP, that discharges into the Speed River, these target compounds were not all efficiently removed (>70%) during treatment. Overall, this study provides insight to possible anti-estrogenic and anti-androgenic compounds that may be contributing to endocrine disrupting activities in surface waters. Author Keywords: Anti-androgens, Anti-estrogens, Cancer Therapy Drugs, Current use pesticides, Pharmaceuticals and Personal Care Products, Polar Organic Chemical Integrative Samplers
Automated Separation and Preconcentration of Ultra-Trace Levels of Radionuclides in Complex Matrices by Online Ion Exchange Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
Radionuclides occur in the environment both naturally and artificially. Along with weapons testing and nuclear reactor operations, activities such as mining, fuel fabrication and fuel reprocessing are also major contributors to nuclear waste in the environment. In terms of nuclear safety, the concentration of radionuclides in nuclear waste must be monitored and reported before storage and/or discharge. Similarly, radionuclide waste from mining activities also contains radionuclides that need to be monitored. In addition, a knowledge of ongoing radionuclide concentrations is often required under certain ‘special’ conditions, for example in the area surrounding nuclear and mining operations, or when nuclear and other accidents occur. Thus, there is a huge demand for new methods that are suitable for continuously monitoring and rapidly analyzing radionuclide levels, especially in emergency situations. In this study, new automated analytical methods were successfully developed to measure ultra trace levels of single or multiple radionuclides in various environmental samples with the goal of faster analysis times and less analyst involvement while achieving detection limits suitable for typical environmental concentrations. Author Keywords: automation, ICP-MS, ion exchange, radionuclide
Assessing limnological characteristics of subarctic Québec thaw ponds and mercury methylation and methylmercury demethylation within their sediments
Thawing permafrost due to increasingly warm temperatures in northern subarctic regions is releasing mercury. The consequent formation of thaw ponds in the peatland palsa valley of the Sasapimakwananisikw (SAS) river in Whapmagoostui-Kuujjuarapik, Québec may provide a pool for MMHg formation and a potential risk to aquatic and human life, if these ponds facilitate MMHg export through hydrological connections to nearby waterways. Hg methylation and MMHg demethylation activities were examined in thaw pond sediments using a Hg tracer isotope incubation experiment. Analysis by coupling gas chromatography cold-vapor atomic fluorescence spectrophotometry (GC-CVAFS) with inductively coupled mass spectrometry (ICP-MS) techniques showed that MMHg was produced at a higher rate and within the first 2 h of incubation for both summer and winter seasons. For thaw ponds SAS1A, SAS1B and SAS2A, MMHg was formed at 0.0048 % h-1, 0.0012 % h-1, and 0.0008 % h-1, respectively during winter and at 0.0001 % h-1, 0.0016 % h-1, and 0.0010 % h-1, respectively during summer. Detection of MMHg losses were not as expected likely due to limitations of the combined tracer spike and overestimation of the in situ ambient mercury levels. Physical and chemical properties vary within ponds, among ponds and between winter and summer. SAS1B’s location nearby an organic carbon rich palsa may be ideal to study DOC – Hg interactions. Variability in pond characteristics including depth, surface area, age, pH, temperature, colour, oxygen concentration, total dissolved and suspended solids, conductivity, carbon, mercury, ammonium, calcium, magnesium, sulfate, total phosphorous, potassium, and sodium between seasons indicate the challenge of predicting future environmental impacts of climate change related thaw pond creation in the north. Author Keywords: demethylation, mercury, methylation, methylmercury, SAS, thaw ponds

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) = Chemistry
  • (-) = Environmental and Life Sciences