Graduate Theses & Dissertations

Pages

Near-road assessment of traffic related air pollutants along a major highway in Southern Ontario
The spatial and temporal variation in atmospheric nitrogen dioxide (NO2), ammonia (NH3), and 17 elements (V, Cr, Fe, Ni, Cu, Zn, As, Cd, Pb, Mg, Al, Ca, Co, Se, Sb, Mn, and Na) were measured at 40 road side locations along a ~250 km traffic density gradient of 40,000–400,000 vehicles on the King’s Highway 401, in Ontario, Canada. Elemental concentrations were measured over a year, using moss bags as passive samplers, for four quarterly three-month exposure periods (October 2015 – October 2016). Gaseous NO2 and NH3 concentrations were measured using Willem’s badge passive diffusive samplers for twelve one-week exposure periods (one per month: October 2015–October 2016). Dry deposition of nitrogen was estimated using the inferential method. There were significant linear relationships between NO2 and NH3 and average annual daily traffic (AADT) volumes across the study area; higher concentrations corresponded to higher volume traffic sites. Average NO2 concentrations at sites ranged from 23.5 to 73 μg/m3, with an annual average of 43.7 μg/m3. Ammonia ranged from 2.56 to 13.55 μg/m3, with an annual average of 6.44 μg/m3. There were significant quarterly variations in NO2, with concentrations peaking during the winter months. In contrast, NH3 showed no significant quarterly variation, but a slight peak occurred during the summer. Gaseous NO2 and NH3 were highly positively correlated (r = 0.63), suggesting a common emission source from traffic. Concentrations in exposed moss were determined by subtracting the total concentration of each metal in the exposed sample from the background concentration present in the moss. Relative accumulation factors (RAF) and contamination factors were also calculated to determine the anthropogenic influence on tissue concentrations in exposed moss. All metals showed elevated levels versus background concentrations, with all metals except Ni and Co showing considerable enrichment. The highest levels of contamination were from V, Cr, Fe, Zn, Cd, Sb, Pb and Na. Principal component analysis indicated 5 clear clusters of related elements, with PC1 accounting for 36.2% and PC2 accounting for 25.6% of the variance. Average annual daily traffic was significantly related to Cr, Fe, Cu, Sb, Mn, Al, and Na. Road side monitoring shows consistently higher concentrations than active monitoring sites located further from the edge of the road, indicating a need for increased road side monitoring in Ontario, Canada. Author Keywords:
Hydrological and Flooding Effects on Stream Nutrient Levels
Stream solutes are strongly linked to hydrology, and as such, we sought to better understand how hydrology, particularly flooding, influences nitrogen (N) and phosphorus (P) levels. We used a long-term dataset of monthly water quality samples for many Ontario, Canada, catchments to assess the effects of landscape variables, such as land use and physiography, on the export of nutrients during floods, and to characterize overall concentration-discharge patterns. In general, we found that landscape variables could partially explain the export variation in flood waters, but that the importance of specific variables depended on flood characteristics. We also found that overall concentration-discharge relationships for N and P C were positive, but non-linear, with greater concentrations on the rising limb of the hydrograph depending on the nutrient. With these results, we have identified general patterns between nutrients and hydrology, which will be helpful for managing the ecological effects of flooding. Author Keywords: C-Q relationships, Discharge, Export, Flooding, Nutrients, Thresholds
Estimating mineral surface area and acid sensitivity of forest soils in Kitimat, British Columbia
In 2012, the Rio Tinto aluminum smelter in Kitimat, British Columbia increased sulphur dioxide (SO2) emissions from 27 to 42 tonnes/day. An initial study was conducted to investigate the effect of the increased sulphur (S) deposition on forest soils. A key uncertainty of the initial study was mineral surface area estimations that were applied to critical load calculations. The current study investigates the effect of organic matter (OM) removal techniques on mineral surface area and the ability to predict mineral surface area using pedotransfer functions (PTFs). Mineral surface area was measured on bulk soil samples using BET gas-adsorption. Organic matter was removed from soil samples prior to surface area measurements using a sodium hypochlorite treatment (NaOCl), loss on ignition (LOI) and no treatment. Removal techniques were found to affect surface area measurements; decreasing in the order of LOI> untreated> NaOCl. Particle-size based PTFs developed from other regions were not significantly correlated with measured surface area. A regionally-specific particle-size based function had stronger predictive value of surface area measurements (adjusted R2=0.82). The PTF that best reflected surface area measurements of bulk soil for the Kitimat area used particle-size data as well as kaolinite, the most abundant clay mineral in the region. Surface area values estimated using the particle-size PTF were applied to the PROFILE model to calculate weathering rates. Weathering rates were then input to critical load calculations using steady-state mass balance. These estimates predicted that none of the 24 measured sites are receiving SO2 deposition in exceedance of their critical load. Author Keywords: acid deposition, critical loads, mineral surface area, mineral weathering, pedotransfer functions, PROFILE
wind tunnel and field evaluation of the efficacy of various dust suppressants
A series of experiments was designed to assess the relative efficacy of various dust suppressants to suppress PM10 emissions from nepheline syenite tailings. The experiments were conducted in the Trent University Environmental Wind Tunnel, Peterborough, Ontario, and on the tailings ponds at the Unimin Ltd Nephton mine near Havelock, Ontario. Treated surfaces were subjected to particle-free airflow, abrasion with blown sand particles, particle-free airflow after physical disturbance, and were measured independently using a pin penetrometer. In the particle-free wind tunnel tests, three of the surfaces performed well, and PM10 emissions scaled inversely with crust strength. Light bombardment of each surface by saltating sand grains resulted in PM10 emission rates two orders of magnitude higher. All treated surfaces emitted significantly more PM10 after physical disturbance in both the laboratory and field research. The results suggest that the site conditions, inclusive of the potential for dust advection and resuspension, must be taken into account when considering the use of a commercial dust suppressant. Author Keywords: dust suppression, field testing, mine tailings, wind tunnel experiment
impact of selection harvesting on soil properties and understory vegetation in canopy gaps and skid roads in central Ontario
Tree harvesting alters nutrient cycling and removes nutrients held in biomass, and as a result nutrient availability may be reduced, particularly in naturally oligotrophic ecosystems. Selection harvesting is a silvicultural technique limited to tolerant hardwood forests where individual or small groups of trees are removed creating a “gap” in the forest canopy. In order for harvesting machinery to gain access to these individual trees, trees are felled to create pathways, known as skid roads. The objective of this study was to characterize differences in soil chemical and physical properties in gaps, skid roads and uncut areas following selection harvesting in central Ontario as well as documenting differences in the understory vegetation community and sugar maple (Acer saccharum) seedlings chemical composition post harvest. First year seedlings were collected for elemental analysis from unharvested areas, canopy gaps, and skid roads in 2014, eight months after harvesting. In 2015, first and second year sugar maple seedlings were collected. Soil bulk density and water infiltration were measured in the three areas of the catchment as well as soil moisture, organic matter content, exchangeable base cations, and net nitrification. Seedlings in the disturbed sites had lower concentrations of Mg, K, P, and N compared with unharvested sites and soil nitrification was significantly lower in the skid roads. Water infiltration rates in the gap and skid roads were slower than the control and concentrations of metals (e.g. Fe, Al, Ca) and litter mass increased in litter bags deployed over 335 days, likely reflecting an increase in soil erosion in the skid roads. Understory vegetation was markedly different amongst sites, particularly the dominance of Carex spp. in the skid roads. The sustainability of industrial logging is dependent on successful tree regeneration, however, increased soil compaction, establishment and growth of grasses and shrubs, as well as low nutrient concentrations in seedlings may ultimately restrict forest succession. Author Keywords: Canadian Shield, nitrification, selection harvesting, soil compaction, sugar maple seedling, understory vegetation
significance of topographically-focused groundwater recharge during winter and spring on the Oak Ridges Moraine, southern Ontario
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous work has emphasized the importance of depression-focused recharge (DFR) for the timing and location of groundwater recharge to the ORM’s aquifers. However, the significance of DFR has not been empirically demonstrated and the relative control of land cover, topography, and surficial geology on DFR is unclear. The potential for DFR was examined for topographic depressions under forested and open, agricultural land covers with similar soils and surficial geology. Recharge (R) was estimated at the crest and base of each depression during the 2012-13 and 2013-14 winter-spring periods (~December – May) using both a 1-dimensional water balance approach and a surface-applied Br- tracer. At each depression, air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface-water levels were monitored and soil properties (texture, bulk density, porosity, and hydraulic conductivity) were measured. Both forested and agricultural land covers experienced soil freezing; however, concrete frost did not develop in the more porous and conductive forest soils. Concrete frost in agricultural depressions resulted in overland flow, episodic ponding and drainage of rain-on-snow and snowmelt inputs. Recharge was an order-of-magnitude greater at the base of open depressions. Observations of ponding (as evidence of DFR) were made at an additional 14 depressions with varying land cover, geometry, and soil type during the 2014 snowmelt period and measurements of pond depth, pond volume, land cover (i.e., percentage of agricultural vs. forested cover), depression geometry (i.e., contributing area, average slope, relief ratio) and soil texture were made. Ponding was restricted to depressions under mostly agricultural cover and a positive, non-linear relationship between pond volume and average slope was shown for sites with similar land cover and soil texture, but neither pond depth nor volume were related to any other depression characteristics. Results suggest that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention. Author Keywords: Concrete frost, Depression-focused groundwater recharge, Oak Ridges Moraine, Ponding, Topographic depressions, Water balance
Agro-Ecological Zoning (AEZ) of Southern Ontario and the Projected Shifts Caused by Climate Change in the Long-term Future
This thesis proposes an agro-ecological zoning (AEZ) methodology of southern Ontario for the characterization and mapping of agro-ecological zones during the historical term (1981-2010), and their shifts into the long-term (2041-2070) projected climate period. Agro-ecological zones are homogenous areas with a unique combination of climate, soil, and landscape features that are important for crop growth. Future climate variables were derived from Earth System Models (EMSs) using a high emission climate forcing scenario from the Intergovernmental Panel on Climate Change 5th Assessment Report. The spatiotemporal shifts in agro-ecological zones with projected climate change are analyzed using the changes to the length of growing period (LGP) and crop heat units (CHU), and their manifestation in agro-climatic zones (ACZ). There are significant increases to the LGP and CHU into the long-term future. Two historical ACZs exist in the long-term future, and have decreased in area and shifted northward from their historical locations. Author Keywords: Agro-climatic Zones, Agro-ecological Zones, Agro-ecological Zoning, Climate Change, Crop Heat Units, Length of Growing Period
effects of in-stream woody debris from selective timber harvest on nutrient pools and dynamics within Precambrian Shield streams
Timber harvest can influence the rate of transfer of organic matter from the terrestrial catchment to streams, which may have both direct and indirect effects on in-stream nutrient pools and dynamics. In the interest of developing sustainable forestry practices, the continued study of the effects of forestry on nutrient dynamics in aquatic systems is paramount, particularly in sensitive nutrient-poor oligotrophic systems. The goal of this study was to investigate the impacts of harvest-related woody debris on stream nutrient status in streams located in the Canadian Shield region of south-central Ontario. Surveys showed greater large (> 10 cm) and small (< 10 cm) woody debris dry masses and associated nutrient pools in streams located in recently (2013) selectively harvested catchments, when compared with catchments not harvested for at least 20 years. Experimental releases of flagging tape underlined the importance of woody debris as a mechanism of coarse particulate organic matter (CPOM) retention. Sediment surveys showed a significant exponential decline in both OM content and nutrients associated with coarse sediment with distance upstream from debris dams. Laboratory leaching experiments suggest that fresh woody debris may be an important short-term source of water-soluble nutrients, particularly phosphorus and potassium. This study suggests that woody debris from timber harvest is both a direct and indirect source of nutrients, as trapped wood and leaves that accumulate behind debris dams can augment stream nutrient export over long time periods. Author Keywords: nutrient leaching, nutrient pools, organic matter retention, selection harvest, southern Ontario, woody debris
Soil mineralizable nitrogen as an indicator of soil nitrogen supply for grain corn in southwestern Ontario
Soil mineralizable nitrogen (N) is the main component of soil N supply in humid temperate regions and should be considered in N fertilizer recommendations. The objectives of this study were to determine the potentially mineralizable N parameters, and improve N fertilizer recommendations by evaluating a suite of soil N tests in southwestern Ontario. The study was conducted over the 2013 and 2014 growing seasons using 19 field sites across southwestern Ontario. The average potentially mineralizable N (N0) and readily mineralizable N (Pool I) were 147 mg kg-1 and 42 mg kg-1, respectively. Pool I was the only soil N test that successfully predicted RY in 2013. The PPNT and water soluble N (WSN) concentration (0-30cm depth) at planting were the best predictors of fertilizer N requirement when combing data from 2013 and 2014. When soils were categorized based on soil texture, the relationships also improved. Our findings suggest that N fertilizer recommendations for grain corn can be improved, however, further field validations are required. Author Keywords: corn, nitrogen, nitrogen mineralization, soil nitrogen supply, soil N test, southwestern Ontario
Impact of Wetland Disturbance on Phosphorus Loadings to Lakes
Total phosphorus (TP) concentrations have declined in many lakes and streams across south- central Ontario, Canada over the past three decades and changes have been most pronounced in wetland-dominated catchments. In this study, long-term (1980-2007) patterns in TP concentrations in streams were assessed at four wetland-dominated catchments that drain into Dickie Lake (DE) in south-central Ontario. Two of the sub-catchments (DE5 and DE6) have particularly large wetland components (31-34 % of catchment area), and wetlands are characterised by numerous standing dead trees and many young live trees (18 – 27 year old). These two streams exhibited large peaks in TP and potassium (K) export in the early 1980s. In contrast, TP and K export from DE8 and DE10 (wetland cover 19 – 20 %) were relatively flat over the entire record (1980-2007), and field surveys indicated negligible standing dead biomass in these wetlands, and a relatively healthy, mixed-age tree community. Furthermore, K:TP ratios in the DE5 and DE6 streams were around 5 in the early 1980s; very similar to the K:P ratio found in biomass, and as stream TP levels fell through the 1980s, K:TP ratios in DE5 and DE6 stream water increased. The coincidence of high TP and K concentrations in the DE5 and DE6 streams as well as evidence of a disturbance event in their wetlands during the early 1980s suggest that the two are related. The diameter of standing dead trees and allometric equations were used to estimate the amount of TP that would have been held in readily decomposed tree tissues in the DE5 wetland. The amount of P that would have been held in the bark, twig, root and foliage compartments of just the standing dead trees at DE5 was approximately half of the amount of excess stream TP export that occurred in the 1980s. This work suggests that disturbance events that lead to wetland tree mortality may contribute to patterns in surface water TP observed in this region. Author Keywords: Chemistry, Disurbance, Nutrients, Tree Death, Water, Wetland
Effects of road salt sodium on soil
While previous studies have focused on how road salt affects water quality and vegetation, limited research has characterized road salt distribution through soil and the resulting impacts. The potential for sodium (Na+) to be retained and impact soil physical and chemical properties is likely to vary depending on the soil’s parent material, and more specifically on the extent of base saturation on the cation exchange complex. This thesis contrasted Na+ retention, impacts, and mobility in roadside soils in two different parent materials within southern Ontario. Soils were sampled (pits and deep cores) during fall 2013 and spring 2014 from two sites along highways within base-poor, Precambrian Shield soil and base-rich soil, respectively. Batch experiments were subsequently performed to investigate the influence of parent material and the effect of co-applied Ca2+-enriched grit on the longevity of Na+ retention in soils. Less Na+ is adsorbed upon the co-application of Ca2+, suggesting grit has a protective effect on soil by increasing cation exchange competition. Positive correlations between Na+ and pH, and negative correlations between Na+ and soil organic matter, % clay and base cations within Shield soils suggest that they are more vulnerable to Na+ impacts than calcareous soils due to less cation exchange competition. However, Na+ is more readily released from calcareous roadside soils, suggesting there is greater potential for Na+ transfer to waterways in regions dominated by calcareous soils. Author Keywords: cation exchange, parent material, road salt, sodium retention, urban soil
Phosphorus deposition in forested watersheds
Phosphorus (P) is an essential macronutrient. In south-central Ontario, foliar P concentrations are low and studies have suggested that P may be limiting forest productivity. Current catchment mass balance estimates however, indicate that P is being retained suggesting that P should not be limiting to tree growth. Phosphorus deposition is measured using bulk deposition collectors, which are continuously open and therefore are subject to contamination by pollen and other biotic material with high P and potassium (K) concentrations and may therefore overestimate net P inputs to forested catchments. Average annual TP and K deposition at three long-term (1984 – 2013) monitoring sites near Dorset, Ontario ranged from 15 to 20 mg·m-2y-1 and 63 to 85 mg·m-2y-1, respectively, and was higher at Paint Lake compared with Plastic Lake and Heney Lake. Phosphorus and K in bulk precipitation were strongly positively correlated, but deposition patterns varied spatially and temporally among the three sites. Total phosphorus and K deposition increased significantly at Plastic Lake and decreased significantly at Paint Lake, but there was no significant trend in TP or K deposition at Heney Lake over the 30 year period. All sites, but especially Paint Lake, exhibited considerable inter-annual variation in TP and K deposition. To quantify the contribution of pollen, which represents an internal source of atmospheric P deposition, Durham pollen collectors during the spring and summer of 2014 were used. The three sites, Paint Lake, Heney Lake, and Plastic Lake had pollen deposition amounts of 5202 grains·cm-2, 7415 grains·cm-2, and 12 250 grains·cm-2, respectively in 2014. Approximately 83% of pollen deposition can be attributed to white pine and red pine that has a concentration of 3 mg·g-1 of P. It was estimated that pollen alone could account for up to one-third of annual bulk P deposition. Extrapolating winter P deposition values to exclude all potential biotic influences (insects, bird feces, leaves), indicates that bulk deposition estimates may double actual net P to forests, which has implications for long-term P availability, especially in harvested sites. Author Keywords: Atmospheric Deposition, Phosphorus, Pine, Pollen, Potassium, South-Central Ontario

Pages

Search Our Digital Collections

Query

Enabled Filters

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/10/19

Author Last Name

Show more

Last Name (Other)

Show more