Graduate Theses & Dissertations

Molecular Architectures for Improved Biomaterials Derived from Vegetable Oils – Application to Energy Storage and Lubricants
The replacement of petroleum with renewable feedstock for energy and materials has become a priority because of concerns over the environment and finite nature of petroleum. The structures of the available natural biomass feedstocks fall short in delivering key functionality required in materials such as lubricants and phase change energy storage materials (PCMs). The approach taken in this thesis was to combine select functional groups with vegetable oil derivatives to create novel PCMs and lubricantswhich deliver desired functionality. One series of diester PCMs were prepared with terephthalic acid and fatty alcohols to address known shortcomings of esters. The second class of PCMs are sulfones prepared from oxidation of fatty sulfides to improve thermal energy storage. Overall, the new PCMs presented narrow phase change temperature ranges, high transition temperature (between 67 to 110℃), high transition enthalpy (210 to 266J/g), minimal supercooling and congruent phase transitions unaffected by cooling rates. They also demonstrated higher thermal degradation stability with onset of degradation from 290 to 310℃. The series of lubricants studied consists of sulfide and sulfonyl functional groups attached to the unsaturation sites of oleyl oleate as pendant groups to improve the thermal and flow properties. The new lubricants present subzero crystallization temperatures, very low crystallization enthalpy and dynamic viscosity as high as 180mPas. Furthermore, they also presented high onset of degradation (up to 322℃) and oxidation (up to 298℃). The PCMs and lubricants of the present thesis demonstrate that select functional groups can be used with common structural elements of vegetable oil such as fatty acids, ester groups and unsaturation sites to make a variety of molecular structures capable of delivering desired properties Author Keywords: Crystal Structure, Lubricant, Phase Change Material, Renewable, Structure-Property Relationships, Vegetable Oil
Frequency-time and polarization considerations in spectral-focusing-based CARS microscopy
Spectral-focusing-based coherent anti-Stokes Raman scattering (SF-CARS) microscopy is a powerful imaging technique that involves temporally and spectrally stretching ultrashort laser pulses and controlling their frequency-time characteristics. However, a broader and more detailed understanding of the frequency-time characteristics of the laser pulses and signals involved, how they are related, and how they influence important aspects such as the spectral resolution is needed to understand the full potential of SF-CARS systems. In this work, I elucidate these relationships and discuss how they can be exploited to optimize SF-CARS microscopy setups. I present a theoretical analysis of the relationships between the spectral resolution, the degree of chirp-matching, and pulse bandwidth in SF-CARS. I find that, despite allowing better ultimate spectral resolution when chirp-matching is attained, the use of the broadest bandwidth pulses can significantly worsen the spectral resolution if the pulses are not chirp-matched. I demonstrate that the bandwidth of the detected anti-Stokes signal is minimized when the pump is twice as chirped as the Stokes, meaning that (perhaps counter-intuitively) a narrow anti-Stokes bandwidth does not imply good spectral resolution. I present approximate expressions that relate the bandwidths of the pump, Stokes, and anti-Stokes pulses to the degree of chirp-matching and outline how these could be used to estimate the amount of glass needed to attain chirp-matching. I develop a spectral-focusing-based polarization-resolved (SFP-CARS) setup, by modifying our existing system, to explore the merits of integrating polarization-dependent detection as an add-on to existing SF-CARS setups. By using the system to study polarization-dependent features in the CARS spectrum of benzonitrile, I assess its capabilities and demonstrate its ability to accurately determine Raman depolarization ratios. Ultimately, the detected anti-Stokes signals are more elliptically polarized than desired, hindering a complete suppression of the non-resonant background. Nevertheless, I find that the SFP-CARS setup is a useful tool for studying polarization-dependent features in the CARS spectra of various samples and is worthy of further investigation. This work clarifies several technical aspects of SF-CARS microscopy and provides researchers with valuable information to consider when working with SF-CARS microscopy systems. Author Keywords: coherent anti-Stokes Raman scattering, nonlinear microscopy, polarization, spectral focusing, spectroscopy
Icelandic Dust Entrainment, Emission & Deposition
Extremely active dust sources within selected areas of Iceland that are comprised of particles supplied from both glacio-fluvial outwash systems and volcanic eruptions (Bullard et al., 2016; Gassó et al., 2018). The supply of sediments, sparsity of vegetation, high frequency of surface winds, and lack of adequate gravel pavement to reduce sand drifting are believed to influence the duration, frequency, and magnitude of these dust events in Iceland. Apart from recent collaborative efforts to measure and model dust entrainment, emission and deposition (Prospero et al., 2012; Zwaaftink et al., 2017), several underlying physical mechanisms that are unique to cold, humid climates and the geology of Iceland are not well understood. This study specifically aims to assess and understand the physics of Icelandic dust entrainment and deposition with an emphasis on the influence of climate and the physical characteristics of the particles. A series of laboratory experiments of different configurations were carried out on several sediments collected from some of the most emissive sources in Iceland in order to understand these dust processes. The results from this study show that the increasing particle sphericity is associated with progressively smaller particle size; and an abundance of amorphous glass increases the surface area and roughness of the particles, which contributes to high porosity that alters the particle skeletal density. The particle features and climate are interlinked with the entrainment and deposition rates. For instance, coarse sediments emit higher PM concentrations than sediments containing more clay. The strong wind shear at the bed surface acts to disperse many of the tiny particle aggregates and coated liquid droplets contained within a splash structure created by the impact of a single water droplet. The deposition of suspended dust particulates is dependent on the particle characteristics and relative humidity. The retreat of glaciers and ice-cap masses in Iceland are expected to expose new dust particulate sources as the global mean temperature continues to rise (Cannone et al., 2008; Radic and Hock, 2011). Therefore, the influence of the particle characteristics and climate on the dust entrainment, emission and de- position must be accounted for in the parameterization of dust dispersion models related to suspended volcaniclastic particles. Author Keywords: High latitude cold climate environments, Icelandic dust particle characteristics, Laser Doppler anemometer, Rain droplet impact, Settling velocity, Wind tunnel
Advanced broadband CARS microscopy based on a supercontinuum-generating photonic crystal fiber
I have developed and improved a coherent anti-Stokes Raman scattering (CARS) microscope based on the spectral focusing (SF) technique. The CARS microscope uses an 800 nm oscillator and a photonic crystal fibre module to generate the supercontinuum Stokes. The photonic crystal fibre was originally designed to generate light beyond 945 nm which is useful for CARS microscopy in the CH/OH frequencies but essentially prevents access to the important fingerprint region at lower frequencies. With expert and nontraditional approaches to generating supercontinuum with sufficient power at wavelengths below 945 nm, I substantially extend the usefulness of the module for SF-CARS microscopy deep into the fingerprint region. Moreover, with the invention of a dynamic supercontinuum generation scheme we call "spectral surfing," I improve both the brightness of the CARS signal and extend the accessible CARS frequency range to frequencies as low as 350 cm$^{-1}$ and as high as 3500 cm$^{-1}$---all in a single scan-window. I demonstrate the capabilities of our broadband SF-CARS system through CARS and four-wave mixing hyperspectroscopy on samples such as astaxanthin, lily pollen and glass; liquid chemicals such as benzonitrile, nitrobenzene and dimethyl sulfoxide; and on pharmaceutical samples such as acetaminophen, ibuprofen, and cetirizine. Furthermore, In search of more useful Stokes supercontinuum sources, I compare the performance of two commercial photonic crystal fibre modules for use in SF-CARS applications, ultimately finding that one module provides better spectral characteristics for static supercontinuum use, while the other provides improved characteristics when spectral surfing is implemented. Author Keywords: coherent anti-Stokes Raman scattering, nonlinear microscopy, scanning microscopy, spectroscopy, supercontinuum generation, vibrational spectroscopy
Role of Dielectric Screening in SrTiO3-Based Interfaces
We build a theoretical model for exploring the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 (STO) and a number of perovskite materials including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation, and the dielectric polarization via a Landau-Devonshire free energy that incorporates STO's strongly nonlinear, nonlocal, field-, and temperature-dependent dielectric response. We consider three models for the dielectric polarization at the interface: an ideal-interface model in which the interface has the same permittivity as the bulk, a dielectric dead-layer model in which the interface has permittivity lower that the bulk, and an interfacial-strain model in which the strain effects are included. The ideal-interface model band structure comprises a mix of quantum 2D states that are tightly bound to the interface, and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the STO substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. We speculate that the quasi-3D tails form the low- density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements. Multiple experiments have observed a sharp Lifshitz transition in the band structure of STO interfaces as a function of applied gate voltage. To understand this transition, we first propose a dielectric dead-layer model. It successfully predicts the Lifshitz transition at a critical charge density close to the measured one, but does not give a complete description for the transition. Second, we use an interfacial-strain model in which we consider the electrostrictive and flexoelectric coupling between the strain and polarization. This coupling generates a thin polarized layer whose direction reverses at a critical density. The transition occurs concomitantly with the polarization reversal. In addition, we find that the model captures the two main features of the transition: the transition from one occupied band to multiple occupied bands, and the abrupt change in the slope of lowest energy band with doping. Author Keywords:
Supercritical Water Chemistry
Supercritical water (SCW) exhibits unique properties that differentiates it from its low temperature behaviour. Hydrogen bonding is dramatically reduced, there is no phase boundary between liquid and gaseous states, heat capacity increases, and there is a drastic reduction of the dielectric constant. Efforts are underway for researchers to harness these properties in the applications of power generation and hazardous waste destruction. However, the extreme environment created by the high temperatures, pressures and oxidizing capabilities pose unique challenges in terms of corrosion not present in subcritical water systems. Molecular Dynamics (MD) simulations have been used to obtain mass transport, hydration numbers and the influence on water structure of molecular oxygen, chloride, ammonia and iron (II) cations in corrosion crevices in an iron (II) hydroxide passivation layer. Solvation regimes marking the transitions of solvation based versus charge meditated processes were explored by locating the percolation thresholds of both physically and hydrogen bonded water clusters. A SCW flow through reactor was used to study hydrogen evolution rates over metal oxide surfaces, metal release rates and the kinetics for the oxidation of hydrogen gas by oxygen in SCW. Insights into corrosion phenomena are provided from the MD results as well as the experimental determination of flow reactor water and hydrogen chemistry. Author Keywords: Flow Studies, Molecular Dynamics, Supercritical Water
Mitigating Cold Flow Problems of Biodiesel
The present thesis explores the cold flow properties of biodiesel and the effect of vegetable oil derived compounds on the crystallization path as well as the mechanisms at play at different stages and length scales. Model systems including triacylglycerol (TAG) oils and their derivatives, and a polymer were tested with biodiesel. The goal was to acquire the fundamental knowledge that would help design cold flow improver (CFI) additives that would address effectively and simultaneously the flow problems of biodiesel, particularly the cloud point (CP) and pour point (PP). The compounds were revealed to be fundamentally vegetable oil crystallization modifiers (VOCM) and the polymer was confirmed to be a pour point depressant (PPD). The results obtained with the VOCMs indicate that two cis-unsaturated moieties combined with a trans-/saturated fatty acid is a critical structural architecture for depressing the crystallization onset by a mechanism wherein while the straight chain promotes a first packing with the linear saturated FAMEs, the kinked moieties prevent further crystallization. The study of model binary systems made of a VOCM and a saturated FAME with DSC, XRD and PLM provided a complete phase diagram including the thermal transformation lines, crystal structure and microstructure that impact the phase composition along the different crystallization stages, and elicited the competing effects of molecular mass, chain length mismatch and isomerism. The liquid-solid boundary is discussed in light of a simple thermodynamic model based on the Hildebrand equation and pair interactions. In order to test for synergies, the PP and CP of a biodiesel (Soy1500) supplemented with several VOCM and PLMA binary cocktails were measured using a specially designed method inspired by ASTM standards. The results were impressive, the combination of additives depressed CP and PP better than any single additive. The PLM and DSC results suggest that the cocktail additives are most effective when the right molecular structure and optimal concentration are provided. The cocktail mixture achieves then tiny crystals that are prevented from aggregating for an extended temperature range. The results of the study can be directly used for the design of functional and economical CFI from vegetable oils and their derivatives. Author Keywords: Biodiesel, Microstructure, Polymorphism, Pour point depressants, Triacylglycerol, Vegetable Oil Based Crystal Modifier

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Physiology
  • (-) ≠ Environmental studies
  • (-) ≠ Farell
  • (-) ≠ Applied Modeling and Quantitative Methods
  • (-) ≠ Master of Science
  • (-) = Physics

Filter Results