Graduate Theses & Dissertations

Agro-Ecological Zoning (AEZ) of Southern Ontario and the Projected Shifts Caused by Climate Change in the Long-term Future
This thesis proposes an agro-ecological zoning (AEZ) methodology of southern Ontario for the characterization and mapping of agro-ecological zones during the historical term (1981-2010), and their shifts into the long-term (2041-2070) projected climate period. Agro-ecological zones are homogenous areas with a unique combination of climate, soil, and landscape features that are important for crop growth. Future climate variables were derived from Earth System Models (EMSs) using a high emission climate forcing scenario from the Intergovernmental Panel on Climate Change 5th Assessment Report. The spatiotemporal shifts in agro-ecological zones with projected climate change are analyzed using the changes to the length of growing period (LGP) and crop heat units (CHU), and their manifestation in agro-climatic zones (ACZ). There are significant increases to the LGP and CHU into the long-term future. Two historical ACZs exist in the long-term future, and have decreased in area and shifted northward from their historical locations. Author Keywords: Agro-climatic Zones, Agro-ecological Zones, Agro-ecological Zoning, Climate Change, Crop Heat Units, Length of Growing Period
Modelling Submerged Coastal Environments
Built upon remote sensing and GIS littoral zone characterization methodologies of the past decade, a series of loosely coupled models aimed to test, compare and synthesize multi-beam SONAR (MBES), Airborne LiDAR Bathymetry (ALB), and satellite based optical data sets in the Gulf of St. Lawrence, Canada, eco-region. Bathymetry and relative intensity metrics for the MBES and ALB data sets were run through a quantitative and qualitative comparison, which included outputs from the Benthic Terrain Modeller (BTM) tool. Substrate classification based on relative intensities of respective data sets and textural indices generated using grey level co-occurrence matrices (GLCM) were investigated. A spatial modelling framework built in ArcGISTM for the derivation of bathymetric data sets from optical satellite imagery was also tested for proof of concept and validation. Where possible, efficiencies and semi-automation for repeatable testing was achieved using ArcGISTM ModelBuilder. The findings from this study could assist future decision makers in the field of coastal management and hydrographic studies. Keywords: Seafloor terrain characterization, Benthic Terrain Modeller (BTM), Multi-beam SONAR, Airborne LiDAR Bathymetry, Satellite Derived Bathymetry, ArcGISTM ModelBuilder, Textural analysis, Substrate classification Author Keywords:

Search Our Digital Collections


Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Bowman
  • (-) ≠ Bell
  • (-) ≠ Weygang
  • (-) = Applied Modeling and Quantitative Methods
  • (-) ≠ Mathematics
  • (-) = Geographic information science and geodesy

Filter Results


2011 - 2021
Specify date range: Show
Format: 2021/10/25

Author Name

Name (Any)


Subject (Topic)