Graduate Theses & Dissertations

Predicting Irregularities in Arrival Times for Toronto Transit Buses with LSTM Recurrent Neural Networks Using Vehicle Locations and Weather Data
Public transportation systems play important role in the quality of life of citizens in any metropolitan city. However, public transportation authorities face criticisms from commuters due to irregularities in bus arrival times. For example, transit bus users often complain when they miss the bus because it arrived too early or too late at the bus stop. Due to these irregularities, commuters may miss important appointments, wait for too long at the bus stop, or arrive late for work. This thesis seeks to predict the occurrence of irregularities in bus arrival times by developing machine learning models that use GPS locations of transit buses provided by the Toronto Transit Commission (TTC) and hourly weather data. We found that in nearly 37% of the time, buses either arrive early or late by more than 5 minutes, suggesting room for improvement in the current strategies employed by transit authorities. We compared the performance of three machine learning models, for which our Long Short-Term Memory (LSTM) [13] model outperformed all other models in terms of accuracy. The error rate for LSTM model was the lowest among Artificial Neural Network (ANN) and support vector regression (SVR). The improved accuracy achieved by LSTM is due to its ability to adjust and update the weights of neurons while maintaining long-term dependencies when encountering new stream of data. Author Keywords: ANN, LSTM, Machine Learning

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Reid
  • (-) ≠ Bowman
  • (-) ≠ Bell
  • (-) ≠ Weygang
  • (-) = Applied Modeling and Quantitative Methods
  • (-) ≠ Mathematics
  • (-) = Kush, Anshuman

Filter Results

Date

2011 - 2021
(decades)
Specify date range: Show
Format: 2021/10/19

Name (Any)

Degree

Subject (Topic)