Graduate Theses & Dissertations

Pages

Groundwater Recharge in a Managed Forest on the Oak Ridges Moraine, Southern Ontario
Groundwater recharge was estimated and compared in two open grasslands, three mixed deciduous forest stands (100+ years in age), three young red pine plantations (27 ¨C 29 years in age) and two old red pine plantations (62 ¨C 63 years in age) on the Oak Ridges Moraine, southern Ontario, Canada. Recharge was estimated using a 1-d water balance with measured precipitation, throughfall, stemflow, snowpack water equivalent and soil water storage, and modelled evapotranspiration. Throughfall distribution beneath red pine canopies showed no consistent variation with distance from the tree boles. Old red pines were not major stemflow producers and although the young red pines showed a slight tendency to focus stemflow (focussing ratio > 1), the inclusion of focussed stemflow when calculating recharge at the stand scale made little difference. Conversely, sugar maple (the predominant species in the mixed deciduous stands) showed a strong tendency to focus throughfall proximal to tree boles and produce large quantities of stemflow, resulting in relatively high soil moisture contents and enhanced opportunities for recharge within ~ 0.5 m of tree boles. Inclusion of these focussed inputs resulted in a ~ 11 ¨C 18 % increase in stand scale recharge estimates. The interpretation of land cover control on recharge was complicated by variations in soil texture between sites. Soil texture and its influence on soil water storage capacity resulted in temporal variations in recharge, with sites exhibiting large storage capacities producing less recharge in the fall and greater recharge in the spring than sites with limited storage capacities. Recharge estimates for the entire study period or seasonal values for sites grouped on the basis of soil water storage capacities showed a general trend of increasing recharge in the order: old red pine ¡Ö young red pine ¡ú mixed deciduous forest ¡Ö open grasslands. The disparity between the red pine plantations and the other sites was driven in large part by greater modelled evapotranspiration in the red pine plantations. The similarity in recharge between mixed deciduous forests and open grasslands was the result of focused inputs and less soil evaporation and transpiration in the mixed deciduous forests compared to the open grasslands. The results of this study suggest planting red pine on grasslands on the Oak Ridges Moraine will initially decrease recharge and this decrease will continue as the red pines mature. However, as the red pine plantations are succeeded by mixed hardwood stands recharge will recover to that of the initial grasslands. Author Keywords: Groundwater Recharge, Land Cover Type, Oak Ridges Moraine, Stemflow, Throughfall, Water Balance
Effects of Silver Nanoparticles on Lake Bacterioplankton
Silver nanoparticles (AgNP) released into aquatic environments could threaten natural bacterial communities and ecosystem services they provide. We examined natural lake bacterioplankton communities' responses to different exposures (pulse vs chronic) and types (citrate and PVP) of AgNPs at realistic environmental conditions using a mesocosm study at the Experimental Lakes Area. An in situ bioassay examined interactions between AgNPs and phosphorus loading. Bacterial communities exposed to high AgNP concentrations regardless of exposure or capping agent type accumulated silver. We observed increases in community production during additions of polyvinylpyrrolidone (PVP) -capped AgNPs and that site and nutrient-specific conditions are important to AgNPs toxicology in aquatic systems. Toxicological effects of AgNP are attenuated in natural conditions and differ from results from laboratory studies of AgNP toxicity. Our results demonstrate more studies are needed to fully assess the risk posed by these novel chemicals to the environment. This work could be useful in forming risk assessment policies which are largely based on lab studies and typically demonstrate strong toxic effects. Author Keywords: bacterial production, bacterioplankton communities, ecological stoichiometry, Experimental Lakes Area, mesocosms, silver nanoparticles
Detecting anti-estrogens and anti-androgens in surface waters impacted by municipal wastewater discharges and agricultural runoff
This study focused on detecting 22 target anti-estrogenic and anti-androgenic compounds in surface waters influenced by both discharges of municipal wastewater and agricultural runoff in Canada and Argentina. Polar organic chemical integrative samplers (POCIS) were used to monitor the target compounds in surface waters. The removals of the target compounds in a municipal wastewater treatment plant (WWTP) in Canada were also evaluated. In both Canada and Argentina pesticides with potential anti-estrogenic and anti-androgenic activities were detected in the surface waters. The highest concentrations were found in Argentina (up to 1010 ng L-1) in areas impacted by heavy agricultural practices. Cyproterone acetate and bicalutamide were the only two anti-cancer drugs detected only at the Canadian study site, the Speed River, ON. In the Guelph WWTP, that discharges into the Speed River, these target compounds were not all efficiently removed (>70%) during treatment. Overall, this study provides insight to possible anti-estrogenic and anti-androgenic compounds that may be contributing to endocrine disrupting activities in surface waters. Author Keywords: Anti-androgens, Anti-estrogens, Cancer Therapy Drugs, Current use pesticides, Pharmaceuticals and Personal Care Products, Polar Organic Chemical Integrative Samplers
Hydrological and Flooding Effects on Stream Nutrient Levels
Stream solutes are strongly linked to hydrology, and as such, we sought to better understand how hydrology, particularly flooding, influences nitrogen (N) and phosphorus (P) levels. We used a long-term dataset of monthly water quality samples for many Ontario, Canada, catchments to assess the effects of landscape variables, such as land use and physiography, on the export of nutrients during floods, and to characterize overall concentration-discharge patterns. In general, we found that landscape variables could partially explain the export variation in flood waters, but that the importance of specific variables depended on flood characteristics. We also found that overall concentration-discharge relationships for N and P C were positive, but non-linear, with greater concentrations on the rising limb of the hydrograph depending on the nutrient. With these results, we have identified general patterns between nutrients and hydrology, which will be helpful for managing the ecological effects of flooding. Author Keywords: C-Q relationships, Discharge, Export, Flooding, Nutrients, Thresholds
Comparing Biological Responses to Contaminants in Darters (Etheostoma spp.) Collected from Rural and Urban Regions of the Grand River Watershed, Ontario
Urban and agricultural activities may introduce chemical stressors, including contaminants of emerging concern (CECs) and current use pesticides (CUPs) into riverine systems. The objective of this study was to determine if fish collected from sites in a river show biomarkers of exposure to these classes of contaminants, and if the biomarker patterns vary in fish collected from urbanized and agricultural sites. The watershed selected for this study was the Grand River in southern Ontario, which transitions from areas dominated by agricultural land use in the north to highly urbanized locations in the southern part of the watershed. Rainbow darters (Etheostoma caerluem) and fantail darters (Etheostoma flabellare) were collected from the Grand River in June, 2014 for biomarker analysis from two urbanized sites and three agricultural sites (n=20 per site). Over the same period of time, Polar Organic Chemical Integrative Samplers (POCIS) were deployed for 2 weeks at each site to monitor for the presence of CUPs and CECs. The amounts of the target compounds accumulated on POCIS, determined using LC-MS/MS were used to estimate the time weighted average concentrations of the contaminants at each site. Data on the liver somatic index for darters indicate site-specific differences in this condition factor (p<0.05). Significant differences in the concentrations of thiobarbituric acid reactive substances (TBARS) in gill tissue (p<0.05) indicate differences in oxidative stress in fish collected from the various sites. Measured concentrations of ethoxyresorufin-O-deethylase (EROD) in liver tissue were significantly different between sites (p<0.05), indicating differences in CYP1A metabolic activity. Finally, acetylcholinesterase (AChE) activity in brain tissue was significantly different between fish from rural and urban sites (p<0.05). The analysis of these biomarkers indicates that fish may be experiencing different levels of biological stress related to different land uses. These data may be useful in developing mitigation strategies to reduce impacts on fish and other aquatic organisms in the watershed. Author Keywords: AChE, Biomarker, Darter, EROD, POCIS, TBARS
Development and Use of Passive Samplers for Monitoring Dissolved and Nanoparticulate Silver in the Aquatic Environment
Silver nanoparticles (nAg) are the largest and fastest growing class of nanomaterials, and are a concern when released into aquatic environments even at low μg L-1+). Diffusive gradient in thin films (DGT) with a thiol-modified resin were used to detect labile silver and carbon nanotubes (CNT-sampler) were used to measure nAg. Laboratory uptake experiments in lake water provided an Ag+ DGT diffusion coefficient of 3.09 x 10 -7 cm2s-1 and CNT sampling rates of 24.73, 5.63, 7.31 mL day-1, for Ag+, citrate-nAg and PVP-nAg, respectively. The optimized passive samplers were deployed in mesocosms dosed with nAg. DGT samplers provided estimated Ag+ concentrations ranging from 0.15 to 0.98 μg L-1 and CNT-samplers provided nAg concentrations that closely matched measured concentrations in water filtered at 0.22 μm. Author Keywords: ICP-MS, mesocosms, nanoparticles, nanosilver, passive sampling
Fate of Silver Nanoparticles in Lake Mesocosms
The fate of silver nanoparticles (AgNPs) in surface waters determines the ecological risk of this emerging contaminant. In this research, the fate of AgNPs in lake mesocosms was studied using both a continuous (i.e. drip) and one-time (i.e. plug) dosing regime. AgNPs were persistent in the tested lake environment as there was accumulation in the water column over time in drip mesocosms and slow dissipation from the water column (half life of 20 days) in plug mesocosms. In drip mesocosms, AgNPs were found to accumulate in the water column, periphtyon, and sediment according to loading rate; and, AgNP coating (PVP vs. CT) had no effect on agglomeration and dissolution based on filtration analysis. In plug mesocosms, cloud point extraction (CPE), single-particle-inductively coupled mass spectroscopy (spICP-MS), and asymmetrical flow field-flow fractionation (AF4-ICP-MS) confirmed the temporal dissolution of AgNPs into Ag+ over time; however, complexation is expected to reduce the toxicity of Ag+ in natural waters. Author Keywords: AF4-ICP-MS, cloud point extraction, fate, mesocosms, silver nanoparticles, SP-ICP-MS
Nitrogen and phosphorus bioavailability in soil amended with alkaline stabilized biosolids
Agricultural land application of biosolids recycles nutrients and organic matter to the soil, however the effect of treatment process on nutrient availability requires further research for better nutrient management. This study examined the bioavailability of nitrogen (N) and phosphorus (P) in alkaline treated biosolids (TB) when amended into three different soils. Despite a 45% reduction in total N and P content during treatment, TB did not show reduced N or P availability compared with sewage sludge (SS). Results of a corn growth experiment and a soil incubation showed that TB amendment resulted in little mineralization and generally net immobilization of N, and 2% total P availability to corn from TB. Results suggest that TB are not a source of bioavailable N in the short-term, but can be used as a P amendment for corn. Nutrient management of agricultural land receiving these materials should focus on P added and liming properties. Author Keywords: Alkaline treated biosolids, Nitrogen, Phosphorus, Soil fertility
Protecting Sources of Drinking Water for the M'Chigeeng First Nation, Manioulin Island, Ontario
The potential impacts of domestic wastewater (DWW) on the source of drinking water for the M’Chigeeng First Nation were monitored as part of the development of a Source Water Protection plan. During a period of continuous overflow of the Gaaming Wastewater Lagoon serving the community, the chemical tracers, caffeine and sucralose were tracked in West Bay with Passive Organic Chemical Integrative Samplers (POCIS). From the results, we speculated that DWI impacts could have been from three possible DWW sources. POCIS deployed above and below the thermocline indicated a higher mean sucralose concentration of 2.52 ± 1.83 ng/L in the hypolimnion of West Bay relative to mean epilimnetic sucralose concentrations of 0.56 ± 0.02 ng/L, suggesting possible wastewater percolation with an estimated time of travel of 61.5 days. Microbial loads of 200 CFU/100 ml E. coli from the lagoon overflow into Mill Creek decreased to 60 CFU/100 ml before entering West Bay. West Bay’s wastewater assimilative capacity met Provincial Water Quality Objectives in the epilimnion and hypolimnion except for dissolved oxygen in the hypolimnion at 4.16 ± 1.86 mg/L, which is a threat to the onset of hypoxia for fish (i.e. <5 mg/L). Assimilative capacity results support a Fall lagoon discharge. Author Keywords: caffeine, drinking water, Passive Organic Chemical Integrative Samplers (POCIS), sucralose, thermocline, wastewater
Effect of the neonicotinoid imidacloprid on embryogenesis and anuran survivorship in frog virus 3 infected tadpoles
Exposure of pre-metamorphic amphibians to neonicotinoid insecticides may be contributing to the global decline in amphibian populations. In this study, anuran embryos and tadpoles of the African clawed frog (Xenopus laevis) and the North American leopard frog (Lithobates pipiens) were used to determine the effects of embryonic exposure to neonicotinoids. In addition, Xenopus was used to determine if prolonged exposure to neonicotinoids influenced tadpole sensitivity to frog virus 3 (FV3). Exposure of anuran embryos to concentrations of the neonicotinoid insecticide, imidacloprid, ranging from 1 -20 ppm induced a concentration dependent increase in malformations of the retina in Xenopus embryos. However, similar responses were not observed with embryos of leopard frogs. Exposure of Xenopus tadpoles to 500 ppb concentration of imidacloprid followed by challenge with FV3 showed that pesticide exposure unexpectedly decreased the rates of mortality, although total mortalities by the end of the experiment were not significantly different from controls. This unexpected observation may be attributed to a reduced inflammatory response induced by exposure to imidacloprid. Despite the low acute toxicity of neonicotinoid insecticides to vertebrates, these studies indicate that exposure to this class of insecticides causes sublethal effects in anuran species during early life stages. Author Keywords: embryogenesis, Lithobates pipiens, neonicotinoid, ranavirus, tadpole, Xenopus laevis
Modelling Monthly Water Balance
Water balance models calculate water storage and movement within drainage basins, a primary concern for many hydrologists. A Thornthwaite water balance model (H2OBAAS) has shown poor accuracy in predicting low flows in the Petawawa River basin in Ontario, so lake storage and winter snow processes were investigated to improve the accuracy of the model. Lake storage coefficients, represented by the slopes of lake stage vs. lake runoff relationships, were estimated for 19 lakes in the Petawawa River basin and compared on a seasonal and inter-lake basis to determine the factors controlling lake runoff behaviour. Storage coefficients varied between seasons, with spring having the highest coefficients, summer and fall having equal magnitude, and winter having the lowest coefficients. Storage coefficients showed positive correlation with lake watershed area, and negative correlation with lake surface area during summer, fall, and winter. Lake storage was integrated into the H2OBAAS and improved model accuracy, especially in late summer, with large increases in LogNSE, a statistical measure sensitive to low flows. However, varying storage coefficients with respect to seasonal lake storage, watershed area, and surface area did not improve runoff predictions in the model. Modified precipitation partitioning and snowmelt methods using monthly minimum and maximum temperatures were incorporated into the H2OBAAS and compared to the original methods, which used only average temperatures. Methods using temperature extremes greatly improved simulations of winter runoff and snow water equivalent, with the precipitation partitioning threshold being the most important model parameter. This study provides methods for improving low flow accuracy in a monthly water balance model through the incorporation of simple snow processes and lake storages. Author Keywords: Lake Storage, Model Calibration, Monthly Water Balance, Petawawa River, Precipitation Partitioning, Snow Melt
An Evaluation of Wastewater Treatment by Ozonation for Reductions in Micropollutant Toxicity to Fish
Micropollutants are discharged into the aquatic environment with industrial and domestic wastewater and these compounds may cause toxic effects in aquatic organisms. In this study, the toxic effects to fish of micropollutants extracted from ozonated and nonozonated municipal wastewater effluent (MWWE) were measured in order to assess the effectiveness of ozonation in reducing toxicity. Juvenile rainbow trout (Oncorhynchus mykiss) injected with extracts prepared from ozonated MWWE had significantly reduced induction of plasma vitellogenin (VTG), significantly reduced hepatic total glutathione (tGSH) levels and an elevated oxidized-to-total glutathione (GSSG-to-tGSH) ratio. Exposure of Japanese medaka (Oryzias latipes) embryos to extracts prepared from both ozonated and non-ozonated MWWE resulted in elevated developmental toxicity in both treatment groups. These results indicate that wastewater treatment by ozonation reduces the estrogenicity of wastewater, but treatment may induce oxidative stress and embryonic developmental toxicity due to the production of toxic by-products. Author Keywords: Estrogenicity, Micropollutants, Oxidative stress, Ozonation, Toxic by-products, Wastewater

Pages

Search Our Digital Collections

Query

Enabled Filters

Filter Results

Date

2009 - 2029
(decades)
Specify date range: Show
Format: 2019/11/13

Author Last Name

Show more

Last Name (Other)

Show more

Degree Discipline