Graduate Theses & Dissertations

Pages

Cytokinin biosynthesis, signaling and translocation during the formation of tumors in the Ustilago maydis-Zea mays pathosystem
Cytokinins (CKs) are hormones that promote cell division. During the formation of tumors in the Ustilago maydis-Zea mays pathosystem, the levels of CKs are elevated. Although CK levels are increased, the origins of these CKs have not been determined and it is unclear as to whether they promote the formation of tumors. To determine this, we measured the CK levels, identified CK biosynthetic genes as well as CK signaling genes and measured the transcript levels during pathogenesis. By correlating the transcript levels to the CK levels, our results suggest that increased biosynthesis and signaling of CKs occur in both organisms. The increase in CK biosynthesis by the pathosystem could lead to an increase in CK signaling via CK translocation and promote tumor formation. Taken together, these suggest that CK biosynthesis, signaling and translocation play a significant role during the formation of tumors in the Ustilago maydis-Zea mays pathosystem. Author Keywords: Biosynthesis, Cytokinins, Signaling, Translocation, Ustilago maydis, Zea mays
Genomic architecture of artificially and sexually selected traits in white-tailed deer (Odocoileus virginianus)
Understanding the complex genomic architecture underlying quantitative traits can provide valuable insight for the conservation and management of wildlife. Despite improvements in sequencing technologies, few empirical studies have identified quantitative trait loci (QTL) via whole genome sequencing in free-ranging mammal populations outside a few well-studied systems. This thesis uses high-depth whole genome pooled re-sequencing to characterize the molecular basis of the natural variation observed in two sexually selected, heritable traits in white-tailed deer (Odocoileus virginianus, WTD). Specifically, sampled individuals representing the phenotypic extremes from an island population of WTD for antler and body size traits. Our results showed a largely homogenous genome between extreme phenotypes for each trait, with many highly differentiated regions throughout the genome, indicative of a quantitative model for polygenic traits. We identified and validated several potential QTL of putatively small-to-moderate effect for each trait, and discuss the potential for real-world application to conservation and management. Author Keywords: evolution, extreme phenotypes, genetics, genomics, quantitative traits, sexual selection
Assessment of an adult lake sturgeon translocation (Acipenser fulvescens) reintroduction effort in a fragmented river system
North American freshwater fishes are declining rapidly due to habitat fragmentation, degradation, and loss. In some cases, translocations can be used to reverse local extirpations by releasing species in suitable habitats that are no longer naturally accessible. Lake sturgeon (Acipenser fulvescens) experienced historical overharvest across their distribution, leading to endangered species listings and subsequent protection and recovery efforts. Despite harvest and habitat protections, many populations do not appear to be recovering, which has been attributed to habitat alteration and fragmentation by dams. In 2002, 51 adult lake sturgeon from the Mattagami River, Ontario, Canada were translocated 340 km upstream to a fragmented 35 km stretch of the river between two hydroelectric generating stations, where sturgeon were considered extirpated. This study assessed the translocation effort using telemetry (movement), demographics and genetic data. Within the first year, a portion of the radio-tagged translocated individuals dispersed out of the release area, and released radio-tagged individuals used different areas than individuals radio-tagged ten years later. Catches of juvenile lake sturgeon have increased over time, with 150 juveniles caught within the duration of this study. The reintroduced population had similar genetic diversity as the source population, with a marked reduction in effective population size (Ne). The results indicate that the reintroduction effort was successful, with evidence of successful spawning and the presence of juvenile lake sturgeon within the reintroduction site. Overall, the results suggest adult translocations may be a useful tool for re-establishing other extirpated lake sturgeon populations. Author Keywords: conservation, endangered species, lake sturgeon, reintroduction, telemetry, translocation
De novo transcriptome assembly, functional annotation, and SNP discovery in North American flying squirrels (genus Glaucomys)
Introgressive hybridization between northern (Glaucomys sabrinus) and southern flying squirrels (G. volans) has been observed in some areas of Canada and the USA. However, existing molecular markers lack the resolution to discriminate late-generation introgressants and describe the extent to which hybridization influences the Glaucomys gene pool. I report the first North American flying squirrel (genus Glaucomys) functionally annotated de novo transcriptome assembly with a set of 146,621 high-quality, annotated putative species-diagnostic SNP markers. RNA-sequences were obtained from two northern flying squirrels and two southern flying squirrels sampled from Ontario, Canada. I reconstructed 702,228 Glaucomys transcripts using 193,323,120 sequence read-pairs, and captured sequence homologies, protein domains, and gene function classifications. These genomic resources can be used to increase the resolution of molecular techniques used to examine the dynamics of the Glaucomys hybrid zone. Author Keywords: annotation, de novo transcriptome, flying squirrels, high-throughput sequencing, hybridization, single nucleotide polymorphisms
Assessing the population genetic structure of the endangered Cucumber tree (Magnolia acuminata) in southwestern Ontario using nuclear and chloroplast genetic markers.
Magnolia acuminata (Cucumber tree) is the only native Magnolia in Canada, where it is both federally and provincially listed as endangered.Magnolia acuminata in Canada can be found inhabiting pockets of Carolinian forest within Norfolk and Niagara regions of southwestern Ontario. Using a combination of nuclear and chloroplast markers, this study assessed the genetic diversity and differentiation of M. acuminata in Canada, compared to samples from the core distribution of this species across the United States. Analyses revealed evidence of barriers to dispersal and gene flow among Ontario populations, although genetic diversity remains high and is in fact comparable to levels of diversity estimated across the much broader range of M. acuminata in the USA. When examining temporal differences in genetic diversity, our study found that seedlings were far fewer than mature trees in Ontario, and in one site in particular, diversity was lower in seedlings than that of the adult trees. This study raises concern regarding the future viability of M. acuminata in Ontario, and conservation managers should factor in the need to maintain genetic diversity in young trees for the long-term sustainability of M. acuminata in Ontario. Author Keywords: conservation genetics, cpDNA, forest fragmentation, Magnolia acuminata, microsatellites, population genetic structure
Using environmental DNA (eDNA) metabarcoding to assess aquatic plant communities
Environmental DNA (eDNA) metabarcoding targets sequences with interspecific variation that can be amplified using universal primers allowing simultaneous detection of multiple species from environmental samples. I developed novel primers for three barcodes commonly used to identify plant species, and compared amplification success for aquatic plant DNA against pre-existing primers. Control eDNA samples of 45 plant species showed that species-level identification was highest for novel matK and preexisting ITS2 primers (42% each); remaining primers each identified between 24% and 33% of species. Novel matK, rbcL, and pre-existing ITS2 primers combined identified 88% of aquatic species. The novel matK primers identified the largest number of species from eDNA collected from the Black River, Ontario; 21 aquatic plant species were identified using all primers. This study showed that eDNA metabarcoding allows for simultaneous detection of aquatic plants including invasive species and species-at-risk, thereby providing a biodiversity assessment tool with a variety of applications. Author Keywords: aquatic plants, biodiversity, bioinformatics, environmental DNA (eDNA), high-throughput sequencing, metabarcoding
Detection of four at-risk freshwater pearly mussel species (Bivalvia
Environmental DNA (eDNA) detection uses species-specific markers to screen DNA from bulk samples, such as water, to infer species presence. This study involved the development and testing of species-specific markers for four freshwater pearly mussels (Unionidae). The markers were applied to water samples from intensively sampled mussel monitoring sites to compare species detections from eDNA with established sampling method detections. Target species were detected using eDNA at all sites where they had previously been detected by quadrat sampling. This paired design demonstrated that eDNA detection was at least as sensitive as quadrat sampling and that high species specificity can be achieved even when designing against many sympatric unionids. Detection failures can impede species conservation efforts and occupancy estimates; eDNA sampling could improve our knowledge of species distributions and site occupancy through increased sampling sensitivity and coverage. Author Keywords: conservation genetics, cytochrome oxidase subunit I (COI), environmental DNA (eDNA), quantitative PCR (qPCR), species at risk (SAR)
Demographic history and conservation genomics of caribou (Rangifer tarandus) in Québec
Genetic variation is the raw material and basis for evolutionary changes in nature. The loss of genetic diversity is a challenge many species are facing, with genomics being a potential tool to inform and prioritize decision making. Whole genome analysis can be an asset to conservation biology and the management of species through the generation of more precise and novel metrics. This thesis uses whole genome re-sequencing to characterize the demographic history and quantify genomic metrics relevant to conservation of caribou (Rangifer tarandus) in Québec, Canada. We calculated the ancestral and contemporary patterns of genomic diversity of five representative caribou populations and applied a comparative population genomics framework to assess the interplay between demographic events and genomic diversity. When compared to the census size, NC, the endangered Gaspésie Mountain caribou population had the highest ancestral Ne:NC ratio which is consistent with recent work suggesting high ancestral Ne:NC is of conservation concern. These ratios were highly correlated with genomic signatures (i.e. Tajima’s D) of recent population declines and explicit demographic model parameters. Values of contemporary Ne, estimated from linkage-disequilibrium showed Gaspêsie having among the highest contemporary Ne:NC ratio. Importantly, classic conservation genetics theory would predict this population to be of less concern based off this metric alone. Inbreeding measures suggested nuanced patterns of inbreeding and correlated to the demographic models. This study suggests that while the Québec populations are all under decline, they harbour enough ancestral genetic variation to replenish any lost diversity, if conservation decisions are made in favour of these populations, specifically supporting NC. Author Keywords:
Genetic Networks to Investigate Structure and Connectivity of Caribou at Multiple Spatial and Temporal Scales
Understanding genetic structure, connectivity, and movement of a species iscritical to management and conservation. Genetic network approaches allow the analysis of genetic information with flexibility and few prior assumptions. In chapter one, I tested the ability of individual-based genetic networks to detect fine-scale structure and connectivity in relation to sampling efforts. My findings revealed individual-based genetic networks can detect fine-scale genetic structure of caribou when using 15 highly variable microsatellite loci. Sampling levels less than 50% of the estimated population size resulted in highly disconnected networks which did not allow for accurate structure analysis; however community detection algorithms were robust in grouping closely related individuals despite low sampling. In chapter two, I used individual-based and population-based genetic networks to investigate structure, connectivity, and movement of caribou across a large study area in Western Canada. A community detection algorithm partitioned the population-based genetic network at multiple spatial scales which uncovered patterns of hierarchical genetic structure and highlighted patterns of gene flow. The hierarchical population structure results aligned with the known distribution of different caribou Designatable Units (DUs) and additional structure was found within each DU. Furthermore, individual-based networks that were constructed with a subset of samples from the Mackenzie Mountains region of the Northwest Territories revealed patterns of long-distance movement and high connectivity across the region. Author Keywords: Biological Conservation, Caribou, Community Detection, Connectivity, Genetic Networks, Structure
Functional Investigation of A Ustilago maydis Xylose Metabolism Gene and its Antisense Transcripts
Ustilago maydis is a biotrophic fungal plant pathogen that causes ‘common smut of corn’ disease. During infection, U. maydis develops a metabolic dependency on its host, relying on uptake of the carbon molecules provided within Zea mays tissues. The research presented indicated a requirement for metabolism of the pentose sugar D-xylose through functional investigation of a U. maydis xylitol dehydrogenase (uxm1), an enzyme involved in the bioconversion of D-xylose. This work is the first to outline the importance of pentose metabolism during biotrophic plant pathogenesis, as U. maydis haploid cells lacking this gene were impaired in their ability to cause disease and grow on medium containing only D-xylose. This thesis also explored the possibility that expression of this carbon-related gene is controlled by antisense RNAs (asRNAs), endogenous molecules with complementarity to mRNAs. Previous investigation of U. maydis asRNAs identified some that are exclusively expressed in the dormant teliospore, suggesting they have a functional role within this cell-type. A subset of these asRNAs at the uxm1 locus were investigated, with the purpose of identifying the mechanism(s) by which they influence U. maydis pathogenesis. This investigation involved the creation and functional analysis of a series of U. maydis deletion and expression strains. Together, these findings provided additional knowledge regarding the possible functions of U. maydis asRNAs, and their involvement in controlling important cellular processes, such as carbon metabolism and pathogenesis. Author Keywords: antisense transcripts, fungal carbon metabolism, non-coding RNAs, pathogenesis, Ustilago maydis, xylitol dehydrogenase
Frog Virus 3
Understanding the maintenance and spread of invasive diseases is critical in evaluating threats to biodiversity and how to best minimize their impact, which can by done by monitoring disease occurrences across time and space. I sought to apply existing and upcoming molecular tools to assess fluctuations in both presence and strain variation of frog virus 3 (FV3), a species of Ranavirus, across Canadian waterbodies. I explored the temporal patterns and spatial distribution of ranavirus presence across multiple months and seasons using environmental DNA techniques. Results indicate that ranavirus was present in approximately 72.5% of waterbodies sampled on a fine geographical scale (<10km between sites, 7,150 km2), with higher detection rates in later summer months than earlier. I then explored the sequence variability at the major capsid protein gene (MCP) and putative virulence gene (vIF-2α) of FV3 samples from Ontario, Alberta, and the Northwest Territories, with the premise of understanding pathogen movement across the landscape. However, a lack of genetic diversity was found across regions, likely due to a lack of informative variation at the chosen genetic markers or lack of mutation. Instead, I found a novel FV3-like ranavirus and evidence for a recombinant between FV3 and a ranavirus of another lineage. This thesis provides a deeper understanding into the spatio-temporal distribution of FV3, with an idea of how widespread and threatening ranaviruses are to amphibian diversity. Keywords: ranavirus, frog virus 3, amphibians, environmental DNA, phylogenetics, wildlife disease, disease surveillance, major capsid protein, vIF-2α Author Keywords: amphibians, environmental DNA, frog virus 3, phylogenetics, ranavirus, wildlife disease
Characterizing the demographic history and prion protein gene variation to infer susceptibility to chronic wasting disease in a naïve population of white-tailed deer (Odocoileus virginianus)
Assessments of the adaptive potential of natural populations are essential for understanding and predicting responses to environmental stressors like climate change and infectious disease. The range of stressors species face in a human-dominated landscape, often have contrasting effects. White-tailed deer (Odocoileus virginianus, deer) are expanding in the northern part of their range following decreasing winter severity and increasing forage availability, caused by climate change. Chronic wasting disease (CWD), a prion disease affecting cervids, is likewise expanding and represents a major threat to deer and other cervids We obtained tissue samples from free-ranging deer across their native range in Ontario, Canada which has yet to detect CWD in wild populations of cervids. High throughput sequencing was used to assess neutral genomic variation and variation in the gene responsible for the protein that misfolds into prions when deer contract CWD, known as the PRNP gene. Neutral variation revealed a high number of rare alleles and no population structure, consistent with an expanding population of deer. Functional genetic variation revealed that the frequencies of variants associated to CWD susceptibility and disease progression were evenly distributed across the landscape and the frequencies were consistent with deer populations not infected with CWD. These findings suggest that an observable shift in PRNP allele frequencies likely coincides with the start of a novel CWD epidemic. Sustained surveillance of genomic and genetic variation can be a useful tool for CWD-free regions where deer are managed for ecological and economic benefits. Author Keywords: Canadian wildlife, population genetics, prion, PRNP, RADseq, ungulate

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Bell
  • (-) ≠ Greenwood
  • (-) ≠ Anthropology
  • (-) = Genetics
  • (-) ≠ Bertrand, Philip
  • (-) ≠ Koen, Erin Leanne
  • (-) = Master of Science

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/28

Degree Discipline