Graduate Theses & Dissertations

Neonatal Environment Influences Behavioural and Physiological Reactivity to Stressors, and Mammary Gland Development in BALB/c Mice
Using rodent models, it is possible to study the behavioural and physiological outcomes of early life stress and the influences on normal mammary gland development and carcinogenic risk. Results demonstrate that the experience of three weeks of prolonged maternal separation (LMS; 4 hrs/day) increased the susceptibility of adult, but not pubertal, female BALB/c mice to engage in higher levels of depressive-related immobility behaviour and lower levels of active floating (a suggested adaptive coping behaviour) in the acute forced swim test, than offspring that experienced three weeks of brief separation (BMS; 15 min/day) events. Despite the increased immobility behaviour, adult LMS female offspring demonstrated lower basal corticosterone levels relative to BMS females. However, the experience of chronic early-life stress, regardless of the length, results in greater changes between non-stressed and stressed corticosterone levels (i.e. stressor reactivity) in adult females compared to their male counterparts. These changes were associated with decreased glucocorticoid receptor and coactivator-associated arginine methyltransferase 1 protein expression in mammary gland of female LMS mice at young adulthood, highlighting potential mechanisms underlying their heightened risk of mammary tumourigenesis. These data suggest that early life environments can induce behavioural and physiological alterations observed in adulthood, which may have an influence on the likelihood of malignancies developing in the breast. Author Keywords: coping, early life stress, mammary gland development, mother-infant interactions, steroid receptors, stressor reactivity
Comparison of Dehydration Techniques for Acute Weight Management in Rowing
Mild sauna dehydration and fluid abstinence were investigated as weight loss strategies for lightweight rowers. Rowers (N=12) performed a power test, an incremental VO2max test, and a visuomotor battery: once euhydrated, once following sauna dehydration (SAU), and once following fluid abstinence and then sauna dehydration (FA). The percent body mass change (%BMC) achieved, %BMC attributable to sauna dehydration, and %BMC attributable to fluid abstinence were used within linear mixed effects models to predict hydration and performance variables. Sauna and overnight dehydration exerted indistinguishable effects on plasma osmolality, urine osmolality and thirst (p > .05). Fluid abstinence but not sauna dehydration was related to lower power production on the power test (b = 12.14W / 1%BMC, FA = 673.46 ± 79.50, SAU = 683.33 ± 72.08, p = .029), a lower total wattage produced on the incremental VO2max test (b = 4261.51W / 1%BMC, FA = 71029.58 ± 16256.56, SAU = 74001.50 ± 14936.56, p = .006), lower wattages at 2 mmol/L (b = 27.84W / 1%BMC, FA = 180.74 ± 40.27, SAU = 190.82 ± 50.79, p < .001) and 4 mmol/L (b = 20.45W / 1%BMC, FA = 221.90 ± 52.62, SAU = 238.89 ± 40.78, p = .002) blood lactate, and slower movement time on a visuomotor task (b = -38.06ms / 1%BMC, p = .004). Mild fluid abstinence but not sauna dehydration reduces rowing performance when two-hour rehydration is allowed. Author Keywords: crew, fluid, hydration, lightweight, sauna, weight

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Farell
  • (-) ≠ Bell
  • (-) ≠ Cultural Studies
  • (-) = Physiology
  • (-) = Psychology

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/29

Author Name

Degree

Degree Discipline

Subject (Topic)