Graduate Theses & Dissertations

Pages

Effects of biodiversity and lake environment on the decomposition rates of aquatic macrophytes in the Kawartha Lakes, Ontario
Decomposition of aquatic macrophytes has an important role in defining lake carbon (C) storage and nutrient dynamics. To test how diversity impacts decomposition dynamics and site-quality effects, I first examined whether the decomposition rate of aquatic macrophytes varies with species richness. Generally, I found neutral effects of mixing, with initial stoichiometry of component species driving decomposition rates. Additionally, external lake conditions can also influence decomposition dynamics. Therefore, I assessed how the decomposition rate of a submersed macrophyte varies across a nutrient gradient in nine lakes. I found decomposition rates varied among lakes. Across all lakes, I found Myriophyllum decomposition rates and changes in stoichiometry to be related to both nutrients and water chemistry. During the incubation changes in detrital stoichiometry were related to lake P and decomposition rates. Aquatic plant community composition and stoichiometry could alter decomposition dynamics in moderately nutrient enriched lakes. Author Keywords: Aquatic Plants, Decomposition, Diversity, Littoral, Macrophytes, Nutrients
Ligand Binding Properties of Giardia Flavohemoglobin
The parasitic protist Giardia intestinalis possesses flavohemoglobin (gFlHb), an enzyme that detoxifies nitric oxide to the less harmful nitrate, and is a potential target for antigiardial drugs that act as ligands to the iron of its heme cofactor. In this work, the binding constants KD of gFlHb, three active-site variants (Q54L, L58A, Y30F) and the E. coli flavohemoglobin (Hmp) towards cyanide, azide and several substituted imidazoles were measured by optical titration. Certain cases such as gFlHb and Hmp were studied further by isothermal titration calorimetry. Binding constants for cyanide and the imidazoles ranged from 2 to 100 M, with the highest affinities observed with for miconazole, a bulky substituted imidazole. Azide was a poor ligand, with binding constants between 0.48 and 26 mM. Among gFlHb and its mutants, L58A tended to have the highest ligand affinities, as mutation of the distal leucine to a less bulky distal alanine residue facilitates the access of the exogenous ligand to the heme iron. In contrast, the Q54L and Y30F variants had binding affinities that in most cases were similar to wild type, which suggests that the inability of their side chains to form hydrogen bonds to these ligands is not a significant factor in binding of imidazole ligands to the enzyme. Comparative results for Hmp and gFlHb ligand binding affinities revealed slight differences which might be explained by the presence of different residues in their active sites apart from their conserved residues. Author Keywords: Flavohemoglobin, Giardia intestinalis, Imidazole binding, Ligand binding, Nitrosative stress
Cytokinins in nematodes
To investigate cytokinins (CKs) in nematodes, CK profiles of a free-living Caenorhabditis elegans and a plant parasitic Heterodera glycines (soybean cyst nematode, SCN) were determined at the egg and larval stages. SCN had higher total CK level than C. elegans; however, CKs in SCN were mostly inactive precursors, whereas C. elegans had more bioactive forms. This is the first study to show that methylthiols are present in nematodes and may affect plant infection. In infectious SCN larvae, methylthiol levels were much higher than in eggs or C. elegans larvae. Furthermore, The CK profiles of SCN-susceptible and resistant Glycine max cultivars at three developmental stages revealed that, regardless of the resistance level, SCN infection caused an increase in root CKs. One resistant cultivar, Pion 93Y05, showed significantly high levels of bioactive N6-isopentenyladenine (iP) in the non-infected roots which indicated a potential role of CKs in soybean resistance to SCN. Author Keywords: Cytokinins, HPLC-MS/MS, Nematode, SCN resistance, Soybean
Enhanced weathering and carbonation of kimberlite residues from South African diamond mines
Mafic and ultramafic mine wastes have the potential to sequester atmospheric carbon dioxide (CO2) through enhanced weathering and CO2 mineralization. In this study, kimberlite residues from South African diamond mines were investigated to understand how weathering of these wastes leads to the formation of secondary carbonate minerals, a stable sink for CO2. Residues from Venetia Diamond Mine were fine-grained with high surface areas, and contained major abundances of lizardite, diopside, and clinochlore providing a maximum CO2 sequestration capacity of 3–6% of the mines emissions. Experiments utilized flux chambers to measure CO2 drawdown within residues and unweathered kimberlite exhibited greater negative fluxes (-790 g CO2/m2/year) compared to residues previously exposed to process waters (-190 g CO2/m2/year). Long-term weathering of kimberlite residues was explored using automated wet-dry cycles (4/day) over one year. Increases in the δ13C and δ18O values of carbonate minerals and unchanged amount of inorganic carbon indicate CO2 cycling as opposed to a net increase in carbon. Kimberlite collected at Voorspoed Diamond Mine contained twice as much carbonate in yellow ground (weathered) compared to blue ground, demonstrating the ability of kimberlite to store CO2 through prolonged weathering. This research is contributing towards the utilization of kimberlite residues and waste rock for CO2 sequestration. Author Keywords: CO2 fluxes, CO2 mineralization, CO2 sequestration, Enhanced weathering, Kimberlite, Passive carbonation
Effect of Water Surface Simulated Rain Drop Impacts on Water to Air Chemical Transfers of Perfluorinated Carboxylic Acids (PFCAs)
Perfluorinated carboxylic acids (PFCAs) are anthropogenic environmentally ubiquitous surfactants that tend to concentrate on water surfaces. This investigation looked at the effect of simulated rain on the atmospheric concentration of a suite of PFCAs (C2 - C12) above the bulk water system. Increased air concentrations of all PFCAs were detected during simulated rain events. Long chain PFCAs (>C8) were found to be much more concentrated in the air above the bulk water system than their short chain counter parts (
Variation in the δ15N and δ13C composition of POM in the Lake Simcoe watershed
The purpose of this study was to quantify the variation of baseline carbon and nitrogen stable isotope signatures in the Lake Simcoe watershed and relate that variation to various physicochemical parameters. Particulate organic matter samples from 2009 and 2011 were used as representatives of baseline isotopic values. Temporal data from two offshore lake stations revealed that δ15N of POM was lowest mid-summer and highest after the fall turnover. POM δ13C was variable throughout the summer before declining after fall turnover. Spatial data from the lake and the tributaries revealed that POM stable isotope signatures were highly variable. Various physicochemical parameters indicative of phytoplankton biomass were significantly positively correlated with POM δ15N and significantly negatively correlated with POM δ13C. The correlations were mostly significant in the tributaries, not the lake. Moreover, many of the correlations involving δ15N of POM were driven by extreme values in Cook's Bay and its tributaries. In general, it's likely that different processes or combination of processes were affecting the δ15N and δ13C POM in the Lake Simcoe watershed as physicochemical parameters alone could not explain the variability. Measuring the δ15N of ammonium and nitrate, as well as the δ13C of DIC would help discern the dominant nitrogen and inorganic carbon cycling processes occurring in the Lake Simcoe watershed. Author Keywords: δ13C, δ15N, isotopic baseline, particulate organic matter, spatial variation, stable isotopes
Investigating Ecological Niche Differentiation Among Wild Candids Experiencing Hybridization in Eastern North America
Currently there are large areas of the North American landscape that are occupied by Canis spp. hybrids of several varieties, leading to the logical question as to the genetic structure and ecological function of Canis populations across the continent, and to what extent hybrids reflect contemporary landscapes. This study illustrated patterns of niche differentiation between parental canid species and their hybrids using individual high quality genetic profile and species distribution models to support the intermediate phenotype hypothesis. In general, hybrids demonstrated an intermediate habitat suitability compared to its parental species, across most environmental variables used. A similar trend was observed in the niche metric analysis, where we found that hybrids exhibit intermediate niche breadth, with eastern coyotes and eastern wolves exhibiting the broader and narrower niche, respectively. Our results demonstrate that the intermediate phenotype hypothesis is supported even at a large scale and when involving highly mobile large mammal species. Author Keywords: canid, ecological niche modelling, hybridization, intermediate phenotype, microsatellite genotype, niche differentiation
Comparison of the Optical Properties of Stratiotes aloids and the Local Plant Community
As part of a mandate to control the spread of Stratiotes aloides (WS; water soldier) in the Trent Severn Waterway, the Ministry of Natural Resources (MNR) created a management plan to eradicate WS. However, one of the biggest challenges in eradicating WS or any invasive aquatic plant is the ability to estimate the extent of its spread and detect new populations. While current detection methods can provide acceptable detection, these methods often require extensive time and effort. The purpose of this thesis was to assess the use optical properties of WS and WS exudates for detection, in order to improve on current detection methods. The optical properties of WS were sampled at three different sites during three different seasons (spring, summer, and fall) by a) randomly sampling tissue from WS and the local plant community at each site, and recording the reflectance properties in a laboratory setting b) collecting dissolved organic matter (DOM) samples from plant incubations and river water in the field. Significant differences in the reflectance properties of WS were observed among samples from different sites and different sampling times; however, changes in fluorescence properties were only seasonal. Despite spatial differences in WS reflectance; WS was detectable using both hyperspectral and multispectral reflectance. When hyperspectral reflectance was used, significant differences between WS and the local plant community were found in June using two bands (i.e. bands 525 and 535, R 2 = 0.46 and 0.48, respectively). Whereas multispectral reflectance was significant different in October using the coastal and blue band. While WS produced a unique signal using both reflectance types, multispectral reflectance had a greater potential for detection. Its greater potential for detection was due to the reduced noise produced by background optical properties in October in comparison to June. DOM derived from WS was also characterized and compared with whole-river DOM samples in order to find unique markers for WS exudates in river samples. While similarities in DOM concentrations of WS exudates to Trent River water limited the ability to detect WS using compositional data, the ratio of C4/C5 components were compared in order to find components that were proportionally similar. Based on the results of this study multispectral and fluorescence techniques are better suited for the detection of a unique WS signature. The results derived from this work are intended to have practical applications in plant management and monitoring, DOM tracing, as well as remote sensing. Author Keywords: Dissolved organic matter, Hyperspectral reflectance, Invasive species management, Multispectral reflectance, PARAFAC, Stratiotes aloides
third wheel
Population cycles are regular fluctuations in population densities, however, in recent years many cycles have begun to disappear. With Canada lynx this dampening has also been seen with decreasing latitude corresponding to an increase in prey diversity. My study investigates the role of alternate prey on the stability of the lynx-hare cycle by first comparing the functional responses of two sympatric but ecologically distinct predators on a primary and alternate prey. I then populated a three species predator-prey model to investigate the role of alternate prey on population stability. My results showed that alternate prey can promote stability, though they are unlikely to “stop the cycle”. Furthermore, stability offered by alternate prey is contingent on its ability to increase intraspecific competition. My study highlights that population cycles are not governed by a single factor and that future research needs to be cognizant of interactions between alternate prey and intraspecific competition. Author Keywords: alternate prey, Canis latrans, functional response, Lepus americanus, Lynx canadensis, Tamiasciurus hudsonicus
Mixed methods approaches in marine mammal science
This thesis explored the contribution of mixed methods approaches to marine mammal science through the use of concurrent and sequential designs to study distribution and feeding ecology of bowhead whales (Balaena mysticetus) in the Arctic region of Nunavik, Quebec, Canada. The study combines Inuit knowledge (IK), collected through semi-directed interviews with Inuit harvesters, and analyses of stable isotopes and trace elements (SI/TE) in baleen plates. A systematic literature review found that mixed methods are increasingly used in marine mammal ecology studies in remote locations, yet are still relatively rare and face a number of challenges. Both IK and SI/TE, indicated that bowhead whales have a seasonal pattern in their distribution and feeding ecology. They are most commonly present in productive nearshore areas in summertime, feeding in areas of great prey diversity, and moving to offshore areas in winter to fast. Mixed methods approaches used in this case study enabled the collection of complementary knowledge about bowhead whale ecology important for local management in a changing climate. This study also shows the value of mixed methods approaches for future marine mammal studies in Nunavik and elsewhere. Author Keywords: Arctic, bowhead whale, distribution, feeding ecology, mixed methods, traditional ecological knowledge
Relationships between Dissolved Organic Matter and Vanadium Speciation in the Churchill River, MB and the Mackenzie River Basin, NWT using diffusive gradients in thin films (DGT)
This study examines the influence of dissolved organic matter (DOM) on dissolved vanadium (V) speciation in the Churchill River and Great Slave Lake using diffusive gradients in thin film (DGT). Vanadium is commonly found in natural environments such as rivers, lakes and oceans. It regulates normal cell growth, but in excessive amounts, it can have toxic effects on human and aquatic organisms. The use of in situ, time integrated DGT devices allows to better (1) monitor the most bioavailable fraction of V, the DGT-labile V, in Arctic Rivers and (2) assess the influence of DOM on dissolved V speciation. Higher DGT-labile V was found in the the central regions of the Mackenzie River (MR), with an average of 7.7 ± 2.3 nM, likely due to sediment leaching and permafrost thawing. The Churchill River and Great Slave Lake (GSL) showed lower DGT-labile V levels (2.2 ± 1.6 nM and 3.6 ± 2.7 nM, respectively), compared to central regions in MR. The CR DGT-labile V concentrations was positively correlated to protein-like DOM concentration and abundance (r = 0.3, p < 0.05). The data collected from this study will help in developing new strategies regarding environmental health and impact assessments of environmentally hazardous waste that consist of potentially high levels of toxic vanadium species. Developments in the use of DGT devices as a sampling method will also aid in future studies involved in analyzing environmental health and specifically dissolved V species in natural waters. Author Keywords: diffusive gradients in thin-films, dissolved organic matter, fluorescence, mass spectrometry, UV-Vis, vanadium
Soil mineralizable nitrogen as an indicator of soil nitrogen supply for grain corn in southwestern Ontario
Soil mineralizable nitrogen (N) is the main component of soil N supply in humid temperate regions and should be considered in N fertilizer recommendations. The objectives of this study were to determine the potentially mineralizable N parameters, and improve N fertilizer recommendations by evaluating a suite of soil N tests in southwestern Ontario. The study was conducted over the 2013 and 2014 growing seasons using 19 field sites across southwestern Ontario. The average potentially mineralizable N (N0) and readily mineralizable N (Pool I) were 147 mg kg-1 and 42 mg kg-1, respectively. Pool I was the only soil N test that successfully predicted RY in 2013. The PPNT and water soluble N (WSN) concentration (0-30cm depth) at planting were the best predictors of fertilizer N requirement when combing data from 2013 and 2014. When soils were categorized based on soil texture, the relationships also improved. Our findings suggest that N fertilizer recommendations for grain corn can be improved, however, further field validations are required. Author Keywords: corn, nitrogen, nitrogen mineralization, soil nitrogen supply, soil N test, southwestern Ontario

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ Materials Science
  • (-) = Environmental and Life Sciences
  • (-) = Master of Science
  • (-) ≠ Natural resource management

Filter Results

Date

2001 - 2031
(decades)
Specify date range: Show
Format: 2021/10/25