Graduate Theses & Dissertations

Self-Organizing Maps and Galaxy Evolution
Artificial Neural Networks (ANN) have been applied to many areas of research. These techniques use a series of object attributes and can be trained to recognize different classes of objects. The Self-Organizing Map (SOM) is an unsupervised machine learning technique which has been shown to be successful in the mapping of high-dimensional data into a 2D representation referred to as a map. These maps are easier to interpret and aid in the classification of data. In this work, the existing algorithms for the SOM have been extended to generate 3D maps. The higher dimensionality of the map provides for more information to be made available to the interpretation of classifications. The effectiveness of the implementation was verified using three separate standard datasets. Results from these investigations supported the expectation that a 3D SOM would result in a more effective classifier. The 3D SOM algorithm was then applied to an analysis of galaxy morphology classifications. It is postulated that the morphology of a galaxy relates directly to how it will evolve over time. In this work, the Spectral Energy Distribution (SED) will be used as a source for galaxy attributes. The SED data was extracted from the NASA Extragalactic Database (NED). The data was grouped into sample sets of matching frequencies and the 3D SOM application was applied as a morphological classifier. It was shown that the SOMs created were effective as an unsupervised machine learning technique to classify galaxies based solely on their SED. Morphological predictions for a number of galaxies were shown to be in agreement with classifications obtained from new observations in NED. Author Keywords: Galaxy Morphology, Multi-wavelength, parallel, Self-Organizing Maps

Search Our Digital Collections

Query

Enabled Filters

  • (-) ≠ History
  • (-) ≠ Art history
  • (-) ≠ Nol
  • (-) = Applied Modeling and Quantitative Methods
  • (-) = Bauer

Filter Results

Date

2009 - 2019
(decades)
Specify date range: Show
Format: 2019/12/08

Author Last Name

Last Name (Other)

Degree