Graduate Theses & Dissertations


Effects of biodiversity and lake environment on the decomposition rates of aquatic macrophytes in the Kawartha Lakes, Ontario
Decomposition of aquatic macrophytes has an important role in defining lake carbon (C) storage and nutrient dynamics. To test how diversity impacts decomposition dynamics and site-quality effects, I first examined whether the decomposition rate of aquatic macrophytes varies with species richness. Generally, I found neutral effects of mixing, with initial stoichiometry of component species driving decomposition rates. Additionally, external lake conditions can also influence decomposition dynamics. Therefore, I assessed how the decomposition rate of a submersed macrophyte varies across a nutrient gradient in nine lakes. I found decomposition rates varied among lakes. Across all lakes, I found Myriophyllum decomposition rates and changes in stoichiometry to be related to both nutrients and water chemistry. During the incubation changes in detrital stoichiometry were related to lake P and decomposition rates. Aquatic plant community composition and stoichiometry could alter decomposition dynamics in moderately nutrient enriched lakes. Author Keywords: Aquatic Plants, Decomposition, Diversity, Littoral, Macrophytes, Nutrients
Purification and Identification of Selenium-containing C-phycocyanin from Spirulina
Selenium is an essential trace nutrient to many organisms, yet in high concentrations it is toxic. Organic selenium is more bioavailable to aquatic biota than inorganic selenium, but is usually found in much lower concentrations. Algae are known to biotransform inorganic selenium into several organo-selenium compounds, but it is unknown whether any of these bioaccumulate in the food chain. In this study, selenium was incorporated into the methionine residues of an algal photosynthetic protein, c-phycocyanin from Spirulina spp. The extent of selenium incorporation was quantified by inductively coupled plasma-mass spectrometry (ICP-MS), and the protein was identified using electrospray mass spectrometry (ES-MS). C-phycocyanin was isolated and purified from Spirulina with a final recovery of 20-30 % of the total c-phycocyanin present. Selenomethionine replaced 92.8% ± 1.22 of the methionine residues in c-phycocyanin when grown in 2.5 ppm sodium selenite. ES-MS was used to obtain protein spectra, and pure c-phycocyanin was identified. Data of full scans provided estimated masses of both protein subunits--α-chain measured at 18,036 Da; β-chain measured at 19,250 Da--close to the theoretical masses. Protein fragmentation by collision-induced dissociation and electron capture dissociation provided approximately 52 % amino acid sequence match with c-phycocyanin from Spirulina platensis. This study demonstrates the incorporation of selenium into an algal protein, and the identification of c-phycocyanin using electrospray ionization-mass spectrometry. Author Keywords:
Hydroclimatic and spatial controls on stream nutrient export from forested catchments
Winter nutrient export from forested catchments is extremely variable from year-to-year and across the landscape of south-central Ontario. Understanding the controls on this variability is critical, as what happens during the winter sets up the timing and nature of the spring snowmelt, the major period of export for water and nutrients from seasonally snow-covered forests. Furthermore, winter processes are especially vulnerable to changes in climate, particularly to shifts in precipitation from snow to rain as air temperatures rise. The objective of this thesis was to assess climatic and topographic controls on variability in stream nutrient export from a series of forested catchments in south-central Ontario. The impacts of climate on the timing and magnitude of winter stream nutrient export, with particular focus on the impact of winter rain-on-snow (ROS) events was investigated through a) analysis of long-term hydrological, chemical and meteorological records and b) high frequency chemical and isotopic measurements of stream and snow samples over two winters. The relationship between topography and variability in stream chemistry among catchments was investigated through a) a series of field and laboratory incubations to measure rates and discern controls on nitrogen mineralization and nitrification and b) analysis of high resolution spatial data to assess relationships between topographic metrics and seasonal stream chemistry. Warmer winters with more ROS events were shown to shift the bulk of nitrate (NO3-N) export earlier in the winter at the expense of spring export; this pattern was not observed in other nutrients [i.e. dissolved organic carbon (DOC), total phosphorus (TP), sulphate (SO4), calcium (Ca)]. Hydrograph separation revealed the majority of ROS flow came from baseflow, but the NO3-N concentrations in rainfall and melting snow were so high that the majority of NO3-N export was due to these two sources. Other nutrient concentrations did not show such a great separation between sources, and thus event export of these nutrients was not as great. Proportionally, catchments with varying topography responded similarly to ROS events, but the absolute magnitude of export varied substantially, due to differences in baseflow NO3-N concentrations. Field and laboratory incubations revealed differences in rates of net NO3-N production between wetland soils and upland soils, suggesting that topographic differences amongst catchments may be responsible for differences in baseflow NO3-N. Spatial analysis of digital elevation models revealed strong relationships between wetland coverage and DOC and dissolved organic nitrogen (DON) concentrations in all seasons, but relationships between topography and NO3-N were often improved by considering only the area within 50 or 100m of the stream channel. This suggests nutrient cycling processes occurring near the stream channel may exert a stronger control over NO3-N stream outflow chemistry. Overall, topography and climate exert strong controls over spatial and temporal variability in stream chemistry at forested catchments; it is important to consider the interaction of these two factors when predicting the effects of future changes in climate or deposition. Author Keywords: biogeochemistry, forest, nitrate, south-central Ontario, stream chemistry, winter
regional comparison of the structure and function of benthic macroinvertebrate communities within Precambrian Shield and St. Lawrence lowland lakes in south-central Ontario
Benthic macroinvertebrtes (BMI) are functionally important in aquatic ecosystems; as such, knowledge of their community structure and function is critical for understanding these systems. BMI were sampled from ten lakes in each of two regions of south-central Ontario to investigate which chemical and physical variables could be shaping their community structure and function. Ten Precambrian Shield lakes in the Muskoka-Haliburton region, and ten St Lawrence lowland lakes in the Kawartha lakes region were sampled. These lakes are geologically and chemically distinct, creating natural chemical and physical gradients within and between both regions. Community function was assessed using stable isotope analysis to elucidate carbon transfer dynamics (δ13C) and food web interactions (δ15N). It was predicted that the BMI from Shield lakes would have a δ13C signature indicative of allochthonous carbon subsidies, whereas the lowland lake BMI signatures would reflect autochthonous production. Additionally, it was predicted that the food web length (measured in δ15N units) would be different in Shield and lowland lakes. Both of these predictions were supported; however, the data indicate that δ13C signatures are more likely influenced by catchment geology (represented by bicarbonate concentration) than the extent of allochthony. The best predictor of food web length was found to be region. To assess BMI community structure, taxonomic richness, %EPT (% Ephemeroptera, Plecoptera, Trichoptera; a water quality index), and distribution of functional feeding groups were examined. Based on chemistry it was expected that the Shield lakes would be more speciose, and of greater water quality (relatively lower nutrient levels). These predictions were rejected; since there were no significant regional differences in taxonomic richness or biologically inferred water quality (%EPT). However, sediment size was found to best explain the variability in both metrics, with greater richness and %EPT found at sites with medium and small substrates than those with large substrates. Significant regional differences were found in the distribution of functional feeding groups. Most notably, there were significantly greater proportions of scrapers and shredders in the lowland and Shield lakes, respectively. Based on the feeding mechanisms of these invertebrates it can be inferred that allochthonous subsidies are likely of greater importance to Shield lake BMI communities than those of the lowland lakes; supporting the carbon transfer prediction. These findings provide insight about the structure and function of BMI communities from two dominant lake types in Ontario, and could be useful when determining how future chemical and physical changes will impact these communities. Author Keywords: benthic macroinvertebrates, community function, community structure, Precambrian Shield, stable isotopes, St. Lawrence lowlands
The objective of this thesis was to assess the influence of anthropogenic sulphur (S) and nitrogen (N) deposition, and harvesting on soil acidity and calcium (Ca2+), magnesium (Mg2+), potassium (K+) and N soil pools in plantation forest soils in Ireland. The response to reductions in anthropogenic S deposition was assessed using temporal trends in soil solution chemistry at two long-term monitoring plots--one on a blanket peat, the other on a peaty podzol. At the peat site, there was little evidence of a response to reductions in throughfall non marine sulphate (nmSO42-) and acidity; soil water acidity was determined by organic acids. In addition, temporal variation in soil water did not respond to that in throughfall. In the podzol, reductions in anthropogenic S and H+ deposition led to a significant improvement in soil water chemistry at 75 cm; pH increased and total aluminum (Altot) concentrations declined. The impact of harvest scenarios on exchangeable Ca2+, Mg2+ and K+ pools was assessed using input-output budgets at 40 sites (30 spruce, 10 pine). Harvest scenarios were stem-only harvest (SOH), stem plus branch harvest (SBH) and stem, branch and needle harvest (whole-tree harvesting; WTH). Average K+ and Mg2+ budgets were positive under these scenarios. However, exchangeable K+ pools were small and due to uncertainty in K+ budgets, could be depleted within one rotation. Average Ca2+ budgets for spruce were balanced under SOH, but negative under SBH and WTH. Nitrogen deposition was high, between 5 and 19 kg N ha-1 yr-1, but was balanced by N removal in SOH. However, N budgets were under SBH and WTH, indicating that these harvesting methods would lead to depletion of soil N over the long-term. Finally, monitoring of N cycling at a spruce plot indicated that N deposition was contributing to large NO3- leaching, and as such the site was N saturated. However, N cycling did not fit the criteria of the N saturation hypothesis; instead leaching was directly related to N deposition and supported the model of kinetic N saturation. Author Keywords: acidic deposition, base cations, input-output budgets, Ireland, nitrogen, whole-tree harvesting
Predictive Digital Mapping of Soils in Kitimat, British Columbia
Soil is an essential natural resource that supports provisioning services such as agriculture, silviculture, and mining. However, there is limited knowledge on forest soil properties across Canada. Digital soil mapping may be used to fill these data gaps, as it can predict soil properties in areas with limited observations. The focus of this study was to develop predictive maps of select soil physicochemical properties for the Kitimat Valley, British Columbia, and apply these maps to assess the potential impacts of sulphur dioxide emissions from an aluminum smelter, on soil properties in the Valley. Exchangeable [Ex.] magnesium, organic matter, pH, coarse fragment, Ex. potassium, bulk density, Ex. calcium, Ex. acidity, and Ex. sodium were all mapped with acceptable confidence. Time to depletion of base cation pools showed that ~240 km2 of the study area had a depletion time of 50 years or less. However, sources of base cations such as atmospheric deposition and mineral weathering were not considered. Author Keywords: acidification, buffering capacity, Digital soil mapping, predictive mapping, regression kriging, soil properties
Effects of flooding on nutrient budgets and ecosystem services
Increases in flooding due to anthropogenic influences such as climate change and reservoir creation will undoubtedly impact aquatic ecosystems, affecting physical, chemical, and biological processes. We used two approaches to study these impacts: a whole-ecosystem reservoir flooding experiment and a systematic literature review. In the whole-ecosystem experiment, we analyzed the impact of flooding on nutrient release from stored organic matter in an upland forest. We found that flooded organic matter produced N (nitrogen) and P (phosphorus), but that more N was released relative to P, increasing the N:P ratio over time. In the systematic literature review, we linked small (<10 year recurrence interval) and extreme (>100 year recurrence interval) floods to changes in 10 aquatic ecosystem services. Generally, extreme floods negatively impacted aquatic ecosystem service provisioning, while small floods contributed positively. Overall, we found that flood impacts vary depending on ecosystem properties (organic matter content) and flood characteristics (magnitude). Author Keywords: ecosystem services, flooding, nutrients, reservoirs, rivers
Early Responses of Understory Vegetation to Above Canopy Nitrogen Additions in a Jack Pine Stand in Northern Alberta
Abstract Early Responses of Understory Vegetation After One Year of Above Canopy Nitrogen Additions in a Jack Pine Stand in Northern Alberta Nicole Melong Nitrogen (N) emissions are expected to increase in western Canada due to oil and gas extraction operations. An increase in N exposure could potentially impact the surrounding boreal forest, which has adapted and thrived under traditionally low N deposition. The majority of N addition studies on forest ecosystems apply N to the forest floor and often exclude the important interaction of the tree canopy. This research consisted of aerial NH4NO3 spray applications (5, 10, 15, 20, 25 kg N ha-1yr-1) by helicopter to a jack pine (Pinus banksiana Lamb.) stand in the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. The main objective was to assess the impacts of elevated N after one year of treatment on the chemistry of understory vegetation, which included vascular plants, terricolous lichens, epiphytic lichens and a terricolous moss species. Changes in vegetation chemistry are expected to be early signs of stress and possible N saturation. Increased N availability is also thought to decrease plant secondary compound production because of a tradeoff that exists between growth and plant defense compounds when resources become available. Approximately 60% of applied N reached the ground vegetation in throughfall (TF) and stemflow (SF). Nitrate was the dominant form of N in TF in all treated plots and organic N (ON) was the dominant form of N in SF in all plots. The terricolous non-vascular species were the only understory vegetation that responded to the N treatments as N concentration increased with increased treatment. Foliar chemistry of the measured epiphytic lichens, vascular species, and jack pine was unaffected by the N treatments. Based on biomass measurements and N concentration increases, the non-vascular terricolous species appear to be assimilating the majority of TF N after one year. Vegetation from the high treatment plot (25 kg N ha-1yr-1) was compared to a jack pine forest receiving ambient high levels of N (21 kg N ha-1yr-1) due to its proximity to Syncrude mining activities. Nitrogen concentrations in plant tissues did not differ between the two sites; however, other elements and compounds differed significantly (Ca, Mg, Al, Fe). After one year of experimental N application, there were no environmental impacts consistent with the original N saturation hypothesis. Author Keywords: Athabasca Oil Sands Region, Canopy Interactions, Jack Pine, Nitrogen, Secondary Chemistry, Understory Vegetation
Fingerprinting of dissolved organic matter and copper ligands in the Canadian Arctic and North Pacific Ocean
Dissolved organic matter (DOM) in oceans provides nutrients and ultraviolet radiation protection to microbes. Some DOM compounds can chelate with metals, including copper, controlling their transport and bioavailability in marine systems. As copper functions as both a nutrient and toxicant, studies into the chemical structures of Cu-ligands is important, however currently limited. In this thesis, the chemical composition of total and Cu-binding DOM is investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the Canadian Arctic and North Pacific. Chapter 2 reveals chemical differences in DOM composition between the southern and northern Canada Basin, revealing the influence of terrestrial and biological sources. Chapter 3 shows the uniqueness of Cu-binding ligands found in the Canadian Arctic and North Pacific Ocean. Studying the composition of DOM gives insight into the chemical diversity of marine DOM, helping to predict the effects of a changing climate on marine ecosystems. Author Keywords: biological, dissolved organic matter, fluorescence, immobilized metal-ion affinity chromatography, mass spectrometry, terrestrial
Patterns of Vegetation Succession on Nickel-Copper Mine Tailings near Sudbury, Ontario
Natural establishment of vegetation on mine tailings is generally limited. Understanding the processes leading to vegetation germination and the survival mechanisms that vegetation species employ in these harsh environments is critical to future remediation efforts. As metalliferous mine tailings are generally nutrient-poor, high in harmful metals, and acidic, vegetation species require distinct mechanisms to germinate and survive in such harsh environments. In this study, edaphic and biotic factors linked to vegetation establishment and diversity were studied at two nickel-copper (Ni-Cu) tailings sites near Sudbury, Ontario. One site had experienced minimal treatment, and the second site was split into partial (hand-distribution of lime) and full (lime, fertilizer, seeding) treatment areas. Tailings were generally acidic, low in organic matter and “available” nutrients, and high in metals such as Al, Cu, Fe, and Ni, but these physical and chemical properties were extremely spatially variable. At both sites, vegetation was distributed in sparse patches, with the greatest diversity in treated areas. There was no clear link between metals and vegetation establishment/diversity at the sites. The primary limiting nutrients on the tailings were phosphorous (P) and potassium (K), and while there were areas of increased soil fertility at the sites, they were not clearly associated with increased vegetation diversity. Both traditional ecological succession and nucleation succession patterns were observed on the site, and the chief species associated with nucleation were primary colonizing trees such as B. papyrifera and P. tremuloides. The relationship between B. papyrifera nutrient retranslocation and tailings restoration was assessed and while B. papyrifera at the sites were deficient in P and K, the trees efficiently retranslocated both P and K during senescence. This research can provide insight into possibilities for future revegetation of similar tailings, enabling industry to make educated decisions when choosing where and how to revegetate, mimicking natural succession patterns. Author Keywords: Acid-mine drainage, Betula papyrifera, ecosystem health, metals, Sudbury, tailings
Molecular Composition of Dissolved Organic Matter Controls Metal Speciation and Microbial Uptake
Aquatic contaminant mobility and biological availability is strongly governed by the complexation of organic and inorganic ligands. Dissolved organic matter (DOM) is a complex, heterogeneous mixture of organic acids, amino acids, lipids, carbohydrates and polyphenols that vary in composition and can complex to dissolved metals thereby altering their fate in aquatic systems. The research conducted in this doctoral dissertation addresses 1) how DOM composition differs between phytoplankton taxa and 2) how DOM composition affects metal speciation and its subsequent microbial bioavailability in laboratory and field conditions. To accomplish this, a series of analytical methods were developed and applied to quantify thiols, sulphur containing DOM moieties, and the molecular composition of DOM. The works presented in this thesis represents one of the first comprehensive and multipronged analyses of the impact of phytoplankton metabolite exudates on microbial metal bioavailability. This dissertation demonstrated the analytical versatility of high-resolution mass spectrometry as a tool for compound specific information, as well as having the capabilities to obtain speciation information of organometallic complexes. The work presented in this PhD strengthens the understanding compositional differences of both autochthonous and allochthonous DOM and their effects on metal biogeochemistry. Author Keywords: Dissolved Organic Matter, Mercury, Metal Accumulation, Phytoplankton, Spring Melts, Thiol
Nitrogen Retention of Terricolous Lichens in a Jack Pine Forest in Northern Alberta
The Athabasca Oil Sands in Alberta, Canada is one of the largest point sources emitters of NOx in Canada and there are concerns that elevated nitrogen (N) deposition will lead to widespread eutrophication impacts, including altered species composition, similar to what has occurred in several parts of Europe. Atmospheric deposition rates as high as 25 kg N ha-1 yr-1 have been measured close to the industrial center. The role of the forest floor in regulating these potential eutrophication effects was investigated following a 5-year enrichment study in which N was applied as NH4NO3 above the canopy of a jack pine (Pinus banksiana Lamb) stand in northern Alberta close to Fort McMurray at dosages ranging from 5 – 25 kg N ha-1 yr-1 in addition to background deposition of 2 kg N ha-1 yr-1. Chemical analysis of lichen mats revealed that apical (upper) lichen tissue N concentration increased with treatment, as did the necrotic tissue. When expressed as a pool, the fibric-humic (FH) material held the largest quantity of N across all treatments due to its relatively large mass. Soil net N mineralization and net nitrification rates did not differ among N inputs after five years of application. A 15N tracer applied to the forest floor showed that N is initially absorbed by the apical lichen, FH material, and the foliage of the vascular plant Vaccinium myrtilloides in particular. After 2 years, the FH 15N pool size was elevated and all other measured pools were depleted, indicating a slow transfer of N to the FH material. Applied 15N was not detectable in mineral soil. The microbial functional gene ammonia monooxygenase (amoA) was undetectable using PCR screening of mineral soil microbial communities in all treatments, and broad fungal/bacterial qPCR assays revealed a weak treatment effect on fungal/bacterial ratios in mineral soil. This work suggests that terricolous lichen mats, which form the majority of ground cover in upland jack pine systems, have a large capacity to effectively retain elevated N deposition via the formation of stable humus. Author Keywords: Biogeochemistry, Boreal Ecology, Lichen, Nitrogen Enrichment, Oil Sands


Search Our Digital Collections


Enabled Filters

  • (-) ≠ History
  • (-) ≠ Art history
  • (-) ≠ Nol
  • (-) ≠ Aquatic sciences
  • (-) = Biogeochemistry

Filter Results


2011 - 2021
Specify date range: Show
Format: 2021/03/05

Degree Discipline