Graduate Theses & Dissertations

Pages

SPATIAL AND TEMPORAL GENETIC STRUCTURE OF WOLVERINE POPULATIONS
Habitat loss and fragmentation can disrupt population connectivity, resulting in small, isolated populations and low genetic variability. Understanding connectivity patterns in space and time is critical in conservation and management planning, especially for wide-ranging species in northern latitudes where habitats are becoming increasingly fragmented. Wolverines (Gulo gulo) share similar life history traits observed in large-sized carnivores, and their low resiliency to disturbances limits wolverine persistence in modified or fragmented landscapes - making them a good indicator species for habitat connectivity. In this thesis, I used neutral microsatellite and mitochondrial DNA markers to investigate genetic connectivity patterns of wolverines for different temporal and spatial scales. Population genetic analyses of individuals from North America suggested wolverines west of James Bay in Canada are structured into two contemporary genetic clusters: an extant cluster at the eastern periphery of Manitoba and Ontario, and a northwestern core cluster. Haplotypic composition, however, suggested longstanding differences between the extant eastern periphery and northwestern core clusters. Phylogeographic analyses across the wolverine's Holarctic distribution supported a postglacial expansion from a glacial refugium near Beringia. Although Approximate Bayesian computations suggested a west-to-east stepping-stone divergence pattern across North America, a mismatch distribution indicated a historic bottleneck event approximately 400 generations ago likely influenced present-day patterns of haplotype distribution. I also used an individual-based genetic distance measure to identify landscape features potentially influencing pairwise genetic distances of wolverines in Manitoba and Ontario. Road density and mean spring snow cover were positively associated with genetic distances. Road density was associated with female genetic distance, while spring snow cover variance was associated with male genetic distance. My findings suggest that northward expanding anthropogenic disturbances have the potential to affect genetic connectivity. Overall, my findings suggest that (1) peripheral populations can harbour genetic variants not observed in core populations - increasing species genetic diversity; (2) historic bottlenecks can alter the genetic signature of glacial refugia, resulting in a disjunct distribution of unique genetic variants among contemporary populations; (3) increased temporal resolution of the individual-based genetic distance measure can help identify landscape features associated with genetic connectivity within a population, which may disrupt landscape connectivity. Author Keywords: conservation genetics, Holarctic species, landscape genetics, peripheral population, phylogeography, wolverine
Ecological and morphological traits that affect the fitness and dispersal potential of Iberian pumpkinseed (Lepomis gibbosus)
The Pumpkinseed (Lepomis gibbosus) is a sunfish that is endemic to eastern portions of Canada and the United States. During the late 19th century, the species was introduced into Europe, and it is now present in over 28 countries. Previous attempts to determine the characteristics that can predict the spread of non-indigenous species have been largely unsuccessful, but new evidence suggests that phenotypic plasticity may help to explain the dispersal and range expansion of some organisms. Experimental comparisons on lower-order taxa have revealed that populations from areas outside of their native range are capable of exhibiting stronger levels of phenotypic plasticity than counterparts from their source of origin. Using Pumpkinseed, I conducted the first native/non- native comparison of phenotypic plasticity in a vertebrate. Progeny from adult Pumpkinseed collected in Ontario, Canada and the Iberian Peninsula (Spain) were reared under variable water velocities, habitat type and competitive pressures, three ecological factors that may affect the dispersal potential of fishes introduced into novel aquatic systems. Differences in phenotypic plasticity, assessed from a morphological perspective, were compared among populations using a traditional distance-based approach. All populations exhibited divergent morphological traits that appeared to be inherited over successive generations. In each experiment, all populations responded to environmental change by developing internal and external morphological forms that, in related taxa, enhance and facilitate foraging and navigation; however, non-native populations always exhibited an overall lower level of phenotypic plasticity. Pumpkinseed from non-native areas may have exhibited a reduction in phenotypic plasticity because of population-based differences. Nevertheless, all Pumpkinseed populations studied were capable of exhibiting phenotypic plasticity to novel environmental conditions, and develop morphological characteristics that may enhance fitness and dispersal in perturbed areas. Author Keywords: Invasive species, Morphology, Phenotypic plasticity, Pumpkinseed sunfish, Reaction norm
Fish and invertebrate use of invasive Phragmites in a Great Lakes freshwater delta
Invasive Phragmites australis ssp. australis (herein “Phragmites”) has established and rapidly spread throughout many coastal areas of the Great Lakes. Known to displace native vegetation communities as it forms large, monotypic stands, Phragmites has a bad reputation when it comes to losses of biodiversity and habitat provision for wildlife. However, the extent to which Phragmites provides habitat for fish and invertebrates in coastal freshwater wetlands remains relatively unquantified. Thus, this study assessed whether fish assemblages and invertebrate communities in stands of Phragmites differ from those in stands of two native emergent vegetation communities, Typha spp. and Schoenoplectus spp. The findings showed significant differences in habitat variables among the vegetation communities in terms of water depth, macrophyte species richness, stem density and water quality. While abundance of the functional feeding group filterer-collectors was found to be significantly less in stands of Phragmites when compared to Schoenoplectus, no difference was observed in invertebrate taxa richness among vegetation communities. Lastly, no difference in fish assemblage or invertebrate community was detected when using multivariate analyses, implying that invasive Phragmites provides habitat that appears to be as valuable for fish and invertebrates as other emergent vegetation types in the St. Clair River Delta. The findings of this study will ultimately benefit the literature on invasive Phragmites and its role as fish habitat in freshwater wetlands, and aid management agencies in decisions regarding control of the invasive species. Author Keywords: aquatic invasive species, aquatic macroinvertebrates, freshwater fish, freshwater wetlands, nMDS, Phragmites
From Foraging to Farming
This study examines foraging strategies during the Middle Woodland Period’s Sandbanks Phase (A.D. 700–1000) on Boyd Island, Pigeon Lake, Ontario. The faunal remains analyzed in this study were recovered from a site associated with the procurement of aquatic and terrestrial taxa. Detailed taphonomic analyses have revealed that the Boyd Island faunal remains were affected by weathering and human transport decisions. White-tailed deer was the most frequently acquired prey at Boyd Island, followed by black bear. Using the central place forager prey choice model as a framework, the analysis of diet breadth and carcass transport patterns suggests that most animal resources were acquired from both aquatic and terrestrial habitats, at moderate distances from the site. Incomplete carcasses of large game appear to have been transported away from the site, where they were subsequently processed for provisioning or consumption. Comparisons with other Sandbanks faunal assemblages and those dating to later periods indicate significant differences in terms of taxonomic composition, while continuing to emphasize the use of fish. It is suggested that the Middle Woodland foragers adopted subsistence strategies focusing on the exploitation of local habitats in which productivity may have been enhanced through niche construction associated with the low-level food production activities. Author Keywords: animal resource exploitation, archaeozoology, foraging theory, Middle Woodland, niche construction theory, southcentral Ontario
Comparative efficacy of eDNA and conventional methods for monitoring wetland anuran communities
Identifying population declines and mitigating biodiversity loss require reliable monitoring techniques, but complex life histories and cryptic characteristics of anuran species render conventional monitoring challenging and ineffective. Environmental DNA (eDNA) detection is a highly sensitive and minimally invasive alternative to conventional anuran monitoring. In this study, I conducted a field experiment in 30 natural wetlands to compare efficacy of eDNA detection via qPCR to three conventional methods (visual encounter, breeding call, and larval dipnet surveys) for nine anuran species. eDNA and visual encounter surveys detected the greatest species richness, with eDNA methods requiring the fewest sampling events. However, community composition results differed among methods, indicating that even top performing methods missed species detections. Overall, the most effective detection method varied by species, with some species requiring two to three methods to make all possible detections. Further, eDNA detection rates varied by sampling season for two species (A. americanus and H. versicolor), suggesting that species-specific ecology such as breeding and larval periods play an important role in eDNA presence. These findings suggest that optimized monitoring of complex anuran communities may require two or more monitoring methods selected based on the physiology and biology of all target species. Author Keywords: amphibian, anuran, conventional monitoring, eDNA, environmental DNA, species richness
Agriculture as Niche Construction
The Neolithic Period (c. 6200 – 4900 BC) in the Struma River Valley led to numerous episodes of cultural diversification. When compared with the neighbouring regions, the ecological characteristics of the Struma River Valley are particularly heterogeneous and the Neolithic populations must have adapted to this distinctive and localized ecological setting. It then becomes reasonable to ask if the evolution of cultural variability in the Struma River Valley was at least partially driven by the ecological setting and differentiation in the evolution of the early agricultural niche. In this thesis, I apply an approach based on niche construction theory and Maxent species distribution modeling in order to characterize the relationship between culture and ecology during each stage of the Neolithic Period and to assess diachronic change. An interpretation of the results demonstrates that the continuous reconstruction of the early agricultural niche allowed for settlement expansion into new eco-cultural niches presenting different natural selection pressures and that cultural change followed. I also found that cultural and historical contingencies played an equally important role on the evolution of populations and that ecological factors alone cannot account for the numerous episodes of cultural diversification that occurred throughout the region. Author Keywords: Agriculture, Bulgaria, Eco-cultural Niche Modeling, Greece, Neolithic, Niche Construction
Cemeteries and Hunter-Gatherer Land-Use Patterns
The principle aim of this thesis is to evaluate the applicability of the Goldstein/Kelly hypothesis, which proposes that hunter-gatherer cemeteries emerge as a product of resource competition, and function to confirm and maintain ancestral ties to critical resources. My evaluation centres on a case study of the earliest known cemeteries of the middle Trent Valley, Ontario. To determine whether these predictions are true, I investigated the ecological context of local wetland-based foraging, and undertook a locational analysis to determine if the placement of cemeteries correlates with environmental characteristics that reflect the presence of valuable resources that are unique to these locations. The analysis reveals that ancient cemeteries in the middle Trent Valley were located near seasonal riparian wetlands, possibly to secure wild rice and the variety of fauna it attracts. Through the integration of paleoecological, archaeological, and ethnographic information for the region, this research finds support for the Goldstein/Kelly hypothesis. Author Keywords: Cemeteries, Hunter-Gatherers, Landscape Archaeology, Late Archaic, Middle Woodland, Ontario
Diversity, Biogeography, and Functional Traits of Native Bees from Ontario’s Far North and Akimiski Island, Nunavut
Bees (clade Anthophila), are poorly studied in northern Canada, as these regions can be difficult to access and have a short growing season. This study examined bees from two such regions: Ontario’s Far North, and Akimiski Island, Nunavut. I present this study as the largest biogeographical study of bees performed in these remote areas to enhance knowledge of northern native bees. I found 10 geographically unexpected species in Ontario and on Akimiski Island. Rarefaction and the Chao 1 Diversity Index showed that Akimiski is nearly as diverse as the Far North of Ontario, a significantly larger area. I also found, based on log femur length versus latitude, Bombus worker size was consistent with Bergmann’s rule, and there were no apparent statistical differences in the community weighted means of functional traits between the Far North’s Boreal Shield and Hudson Bay Lowlands ecozones. This work provides invaluable knowledge of the native bee species from these regions, which has implications for their future conservation. Author Keywords: Akimiski Island, Bergmann's rule, Chao 1, Community-weighted means, native bees, rarefaction
HABITAT SELECTION AND LIFE-HISTORY TRAITS OF BREEDING BIRDS IN THE BOREAL-TUNDRA ECOTONE, WITH SPECIAL ATTENTION TO THE AMERICAN ROBIN (TURDUS MIGRATORIUS)
I investigated biodiversity of birds and vegetation associations along the boreal-tundra ecotone in Ivvavik National Park, Yukon Territory, and breeding adaptations used by American Robins (Turdus migratorius) at high latitudes. Twenty bird species were detected over three years using point-count surveys. Densities of American Robin, Dark-eyed Juncos (Junco hyemalis), and Yellow-rumped Warbler (Dendroica coronata) had positive relationships with tree and shrub density, whereas density of White-crowned Sparrows (Zonotrichia leucophrys) was negatively related to tree density. American Robins at this latitude raised only one brood, but females laid slightly larger clutches, the young fledged earlier, and pairs experienced higher nest-success than American Robins at more southerly latitudes. American Robins selected nest sites with high vegetation volume, at both the nest-site, and the nest-patch. This study is important for the first description of the bird community at this high latitude location, and describing how a species at the northern limit of the boreal forest has adapted to living with short-breeding seasons. Author Keywords: American Robin, Ivvavik National Park, Life History, Nest-stie selection, Northern limit
Investigating the regional variation in frequencies of the invasive hybrid cattail, Typha × glauca
Interspecific hybridization rates can vary depending on genomic compatibilities between progenitors, while subsequent hybrid spread can vary depending on hybrid performance and habitat availability for hybrid establishment and persistence. As a result, hybridization rates and hybrid frequencies can vary across regions of parental sympatry. In areas around the Laurentian Great Lakes, Typha × glauca is an invasive plant hybrid of native Typha latifolia and introduced Typha angustifolia. In areas of parental sympatry in Atlantic Canada and outside of North America, T. × glauca has been reported as either rare or non-existent. I investigated whether the low frequencies of hybrids documented in Nova Scotia, Atlantic Canada, are influenced by reproductive barriers that prevent hybrid formation or environmental factors (salinity) that reduce hybrid performance. I identified an abundance of hybrids in the Annapolis Valley (inland) and a scarcity of hybrids in coastal wetlands through preliminary site surveys throughout Nova Scotia. In Annapolis Valley populations, flowering times of progenitor species overlapped, indicating that asynchronous flowering times do not limit hybrid formation in this region. Viable progeny were created from interspecific crosses of T. latifolia and T. angustifolia from Nova Scotia, indicating that there are no genomic barriers to fertilization and germination of hybrid seeds. Typha × glauca germination in high salinity was significantly lower than that of T. latifolia, but there was no difference at lower salinities. Therefore, while germination of hybrid seeds may be impeded in the coastal wetlands where salinity is high, inland sites have lower salinity and thus an environment conducive to hybrid germination. However, I found that once established as seedlings, hybrids appear to have greater performance over T. latifolia across all salinities through higher ramet production. Moreover, I found that T. latifolia sourced from Ontario had reduced germination and lower survivorship in high salinities compared to T. latifolia sourced from Nova Scotia, which could indicate local adaptation by T. latifolia to increased salinity. These findings underline that interactions between environment and local progenitor lineages can influence the viability and the consequent distribution and abundance of hybrids. This, in turn, can help explain why hybrids demonstrate invasiveness in some areas of parental sympatry but remain largely absent from other areas. Author Keywords: flowering phenology, Hybridization, invasive species, physiology, pollen compatibility, salinity tolerance
effects of heat dissipation capacity on avian physiology and behaviour
In endotherms, physiological functioning is optimized within a narrow range of tissue temperatures, meaning that the capacity to dissipate body heat is an important parameter for thermoregulation and organismal performance. Yet, experimental research has found mixed support for the importance of heat dissipation capacity as a constraint on reproductive performance. To investigate the effects of heat dissipation capacity on organismal performance, I experimentally manipulated heat dissipation capacity in free-living tree swallows, Tachycineta bicolor, by trimming feathers overlying the brood patch, and monitored parental provisioning performance, body temperature, and offspring growth. I found that individuals with an enhanced capacity to dissipate body heat (i.e., trimmed treatment) provisioned their offspring more frequently, and reared larger offspring that fledged more consistently. Although control birds typically reduced their nestling provisioning rate at the highest ambient temperatures to avoid overheating, at times they became hyperthermic. Additionally, I examined inter-individual variation in body temperature within each treatment, and discovered that body temperature is variable among all individuals. This variability is also consistent over time (i.e., is repeatable), irrespective of treatment. Further, I found that individuals consistently differed in how they adjusted their body temperature across ambient temperature, demonstrating that body temperature is a flexible and repeatable physiological trait. Finally, I used a bacterial endotoxin (lipopolysaccharide) to examine the regulation of body temperature of captive zebra finches (Taeniopygia guttata) during an immune challenge. Exposure to lipopolysaccharide induces sickness behaviours, and results in a fever, hypothermia, or a combination of the two, depending on species and dosage. I asked what the relative role of different regions of the body (bill, eye region, and leg) is in heat dissipation/retention during the sickness-induced body temperature response. I found that immune-challenged individuals modulated their subcutaneous temperature primarily through alterations in peripheral blood flow, particularly in the legs and feet, detectable as a drop in surface temperature. These results demonstrate that the importance of regional differences in regulating body temperature in different contexts. Taken together, my thesis demonstrates that heat dissipation capacity can affect performance and reproductive success in birds. Author Keywords: body temperature, heat dissipation, tree swallow, zebra finch
Effects of flooding on nutrient budgets and ecosystem services
Increases in flooding due to anthropogenic influences such as climate change and reservoir creation will undoubtedly impact aquatic ecosystems, affecting physical, chemical, and biological processes. We used two approaches to study these impacts: a whole-ecosystem reservoir flooding experiment and a systematic literature review. In the whole-ecosystem experiment, we analyzed the impact of flooding on nutrient release from stored organic matter in an upland forest. We found that flooded organic matter produced N (nitrogen) and P (phosphorus), but that more N was released relative to P, increasing the N:P ratio over time. In the systematic literature review, we linked small (<10 year recurrence interval) and extreme (>100 year recurrence interval) floods to changes in 10 aquatic ecosystem services. Generally, extreme floods negatively impacted aquatic ecosystem service provisioning, while small floods contributed positively. Overall, we found that flood impacts vary depending on ecosystem properties (organic matter content) and flood characteristics (magnitude). Author Keywords: ecosystem services, flooding, nutrients, reservoirs, rivers

Pages

Search Our Digital Collections

Query

Enabled Filters

Filter Results

Date

2012 - 2032
(decades)
Specify date range: Show
Format: 2022/11/29