Graduate Theses & Dissertations

Pages

Fall Migratory Behaviour and Cross-seasonal Interactions in Semipalmated Plovers (Charadrius semipalmatus) Breeding in the Hudson Bay Lowlands, Canada
I used the Motus Wildlife Tracking System to monitor the fall migration behaviour and assess the underlying drivers of migration strategy in a small shorebird, the Semipalmated Plover (Charadrius semipalmatus), breeding at two subarctic sites: Churchill, Manitoba and Burntpoint Creek, Ontario, Canada. Semipalmated Plovers from both sites departed breeding areas between mid-July and early August, with females preceding males and failed breeders preceding successful breeders. Migrants showed between and within-population variation in migration behaviour, though birds from both sites tended to follow interior or coastal routes and congregated in three major stopover regions along the mid-Atlantic coast of North America. I found that later-departing birds had initial flight tracks oriented more toward the south, faster overall ground speeds, were less likely to stopover in North America, and stopped at lower latitudes, suggesting that later-departing individuals use aspects of a time-minimizing strategy on fall migration. My findings emphasize the importance of the mid-Atlantic coast for Semipalmated Plovers and establish connectivity between sites used during breeding and migration. Author Keywords: Breeding, Migration, Motus, Semipalmated Plover, Shorebird, Stopover
Genomic architecture of artificially and sexually selected traits in white-tailed deer (Odocoileus virginianus)
Understanding the complex genomic architecture underlying quantitative traits can provide valuable insight for the conservation and management of wildlife. Despite improvements in sequencing technologies, few empirical studies have identified quantitative trait loci (QTL) via whole genome sequencing in free-ranging mammal populations outside a few well-studied systems. This thesis uses high-depth whole genome pooled re-sequencing to characterize the molecular basis of the natural variation observed in two sexually selected, heritable traits in white-tailed deer (Odocoileus virginianus, WTD). Specifically, sampled individuals representing the phenotypic extremes from an island population of WTD for antler and body size traits. Our results showed a largely homogenous genome between extreme phenotypes for each trait, with many highly differentiated regions throughout the genome, indicative of a quantitative model for polygenic traits. We identified and validated several potential QTL of putatively small-to-moderate effect for each trait, and discuss the potential for real-world application to conservation and management. Author Keywords: evolution, extreme phenotypes, genetics, genomics, quantitative traits, sexual selection
Effects of Invasive Wetland Macrophytes on Habitat Selection by Turtles
Invasive species that alter habitats can have significant impacts on wildlife. The invasive graminoids Phragmites australis (Cav.) Trin. ex Steud, hereafter Phragmites, and Typha × glauca Godr. are rapidly spreading into North American wetlands, replacing native vegetation. Invasive Phragmites is considered a potential threat to several species-at-risk (SAR), including some turtle species. My study wetland contained large stands of Phragmites, as well as Typha spp. (including invasive T. × glauca) that have similar structural traits to Phragmites. To explore the hypothesis that Phragmites and Typha spp. do not provide suitable habitat for turtles, I tested the prediction that turtles avoid Phragmites- and Typha-dominated habitats. I used VHF-GPS transmitters to follow Blanding’s turtles (Emydoidea blandingii, n = 14) and spotted turtles (Clemmys guttata, n = 12). I found that both turtle species did not avoid Phragmites- or Typha-dominated habitats when choosing a home range, or while moving within their home range. I also tested whether the microhabitat selection of Blanding’s turtles and spotted turtles is affected by shoot density of Phragmites, Typha spp., or both. I compared shoot densities of Phragmites and Typha spp. in 4 m2 plots, from locations used by tracked turtles with paired, random locations in these turtles’ home ranges. For both turtle species, the densities of Phragmites and Typha shoots were comparable between used and random locations within the home ranges (generalized linear mixed model; p > 0.05). The use of Phragmites- and Typha-dominated habitats by Blanding’s turtles and spotted turtles suggests that these habitats do not automatically constitute “unsuitable habitats” for turtles. Phragmites and Typha spp. (especially T. × glauca) can replace preferred habitats of some turtle species, and the control of these invasive macrophytes can help to preserve habitat heterogeneity. However, the presence of SAR turtles in Phragmites and Typha spp. stands should inform risk-assessments for invasive plant species control methods that include mechanical rolling of stands, where heavy machinery might encounter turtles. Author Keywords: Blanding’s turtles, compositional analysis, habitat selection, Phragmites australis, spotted turtles, Typha x glauca
Behavioural ecology and population dynamics of freshwater turtles in a semi-urban landscape at their northern range limit
Species are faced with a variety of challenges in the environment, including natural challenges, such as variability in ambient temperature, and anthropogenic threats, such as habitat transformation associated with urbanisation. Understanding how animals respond to these kinds of challenges can advance the field of behavioural ecology and guide management decisions for wild species. Yet, we still have limited understanding of the extent of natural and human-caused impacts on animal behaviour and population dynamics, and lack robust assessment of behaviour in free-ranging animals. Using novel miniaturised biologging technologies, I characterised and validated behaviour in two freshwater turtle species: Blanding’s turtles (Emydoidea blandingii) and Painted turtles (Chrysemys picta). Further, I investigated how these two ectothermic species navigate a thermally heterogeneous landscape near their northern range limit, by comparing selected and available ambient temperatures. I showed that turtles preferred locations that were, on average, warmer and less variable in temperature than the available environment, and that this thermal sensitivity was greatest early in the year, and at fine spatial scales that likely matched the species' perception of the environment. Lastly, I assessed whether urban development was compatible with long-term viability of a Blanding’s turtle population, by monitoring habitat change and turtle survival over one decade of ongoing residential and road development. I found that Blanding’s turtle habitat quantity and connectivity declined in the area, which coincided with high road mortality and severe declines in turtle survival and population size, especially in adult females. I concluded that urban development and current road mortality rates are incompatible with the long-term viability of this at-risk turtle population. Overall, my findings demonstrate the importance of variation in the thermal environment and anthropogenic impacts on habitat in shaping the behaviour and population dynamics of this species-at-risk. Author Keywords: animal behaviour, biologging, ectotherms, habitat selection, temperature, urbanisation
Assessing Connectivity of Protected Area Networks and the Role of Private Lands in the United States
Forestalling biodiversity loss through the establishment of protected areas is a universally accepted conservation strategy, yet despite established guidelines for protected area coverage and placement, much of the world is currently failing to meet its commitments to conservation planning and landscape protection. Calls for the United States to protect more land usually focus on the need for strategic selection of land parcels to bolster protected area coverage and network functionality, but to date there lacks focused research on either the role of private protected areas in conservation planning or the factors affecting individual protected area selection and importance. We determined gaps in conservation planning in the contiguous United States by analyzing the connectivity of protected area networks by state, and assessing the importance of private protected areas in improving linkages in protected area connectivity. We found that all states had low coverage from protected areas (average <8.4% of total land mass), and especially private protected areas (average <1.1% of total land mass), and that the overall contribution of such areas to protected area network connectivity also was low. Terrain ruggedness was identified as the main factor affecting the current location of protected areas, and that protected area spatial layout is a primary influence on landscape connectivity. We conclude that establishment of private protected areas could offer a viable conservation tool for increasing protected area coverage and connectivity, but that current efforts are inadequate to either adequately link existing protected areas or to meet established land protection guidelines. Author Keywords: Aichi Target 11, conservation planning, graph theory, network theory, private conservation, protected areas
Demography and habitat selection of Newfoundland caribou
The objective of this thesis is to better understand the demography and habitat selection of Newfoundland caribou. Chapter 1 provides a general introduction of elements of population ecology and behavioural ecology discussed in the thesis. In Chapter 2, I examine the causes of long-term fluctuations among caribou herds. My findings indicate that winter severity and density-dependent degradation of summer range quality offer partial explanations for the observed patterns of population change. In Chapter 3, I investigate the influence of climate, predation and density-dependence on cause-specific neonate survival. I found that when caribou populations are in a period of increase, predation from coyotes and bears is most strongly influenced by the abiotic conditions that precede calving. However, when populations begin to decline, weather conditions during calving also influenced survival. I build on this analysis in Chapter 4 by determining the influence of climate change on the interplay between predation risk and neonate survival. I found that the relative equilibrium between bears and coyotes may not persist in the future as risk from coyotes could increase due to climate change. In Chapter 5, I investigate the relationships in niche overlap between caribou and their predators and how this may influence differential predation risk by affecting encounter rates. For coyotes, seasonal changes in niche overlap mirrored variation in caribou calf risk, but had less association with the rate of encounter with calves. In contrast, changes in niche overlap during the calving season for black bears had little association with these parameters. In Chapter 6, I examine broad-level habitat selection of caribou to study trade-offs between predator avoidance and foraging during the calving season. The results suggest that caribou movements are oriented towards increased access to foraging and the reduction of encounter risk with bears, and to a lesser extent, coyotes. Finally, I synthesize the major findings from this thesis and their relevance to caribou conservation in Chapter 7, to infer that Newfoundland caribou decline is ultimately driven by extrinsic and intrinsic elements related to density-dependence. Reduction in neonate survival emerged from nutritionally-stressed caribou females producing calves with lower survival. Author Keywords: Behavioural ecology, Black bear (Ursus americanus), Coyote (Canis latrans), Population ecology, Predator-prey interactions, Woodland caribou (Rangifer tarandus)
Sex-Specific Graphs
Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life historical traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have investigated the potential effect of sex-specific functional connectivity on genetic structure. The recent uses of Graph Theory in landscape genetics have demonstrated network capacities to describe complex system behaviors where network topology intuitively represents genetic interaction among sub-units. By implementing a sex-specific network approach, our results suggest that Sex-Specific Graphs (SSG) are sensitive to differential male and female dispersal dynamics of a fisher (Martes pennanti) metapopulation in southern Ontario. Our analyses based on SSG topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population-level, could be partitioned among sex-specific strata. We found that female connectivity was negatively affected by snow depth, while being neutral for males. Our findings underlined the potential of conducting sex-specific analysis by identifying landscape elements that promotes or impedes functional connectivity of wildlife populations, which sometimes remains cryptic when studied at the population level. We propose that SSG approach would be applicable to other vagile species where differential sex-specific processes are expected to occur. Author Keywords: genetic structure, Landscape Genetics, Martes pennanti, Population Graph, sex-biased dispersal, Sex-Specific Graphs
Assessment of an adult lake sturgeon translocation (Acipenser fulvescens) reintroduction effort in a fragmented river system
North American freshwater fishes are declining rapidly due to habitat fragmentation, degradation, and loss. In some cases, translocations can be used to reverse local extirpations by releasing species in suitable habitats that are no longer naturally accessible. Lake sturgeon (Acipenser fulvescens) experienced historical overharvest across their distribution, leading to endangered species listings and subsequent protection and recovery efforts. Despite harvest and habitat protections, many populations do not appear to be recovering, which has been attributed to habitat alteration and fragmentation by dams. In 2002, 51 adult lake sturgeon from the Mattagami River, Ontario, Canada were translocated 340 km upstream to a fragmented 35 km stretch of the river between two hydroelectric generating stations, where sturgeon were considered extirpated. This study assessed the translocation effort using telemetry (movement), demographics and genetic data. Within the first year, a portion of the radio-tagged translocated individuals dispersed out of the release area, and released radio-tagged individuals used different areas than individuals radio-tagged ten years later. Catches of juvenile lake sturgeon have increased over time, with 150 juveniles caught within the duration of this study. The reintroduced population had similar genetic diversity as the source population, with a marked reduction in effective population size (Ne). The results indicate that the reintroduction effort was successful, with evidence of successful spawning and the presence of juvenile lake sturgeon within the reintroduction site. Overall, the results suggest adult translocations may be a useful tool for re-establishing other extirpated lake sturgeon populations. Author Keywords: conservation, endangered species, lake sturgeon, reintroduction, telemetry, translocation
Effects of Hydroelectric Corridors on the Distribution of Female Caribou (Rangifer tarandus) on the Island of Newfoundland
A species of concern is caribou (Rangifer tarandus), a species in decline across most of the circumpolar North, including the island of Newfoundland. Resource exploitation across caribou ranges is projected to accelerate in the coming decades as oil extraction, roads, forest harvesting, and mining encroach upon their habitat. Hydroelectric corridors, in particular, are anticipated to expand significantly. The effects of these linear developments on caribou habitat remain unclear. I capitalized on an existing dataset of nearly 700 radio‐tracked female caribou, 1980‐2011, to determine the long‐term effects of hydroelectric corridors on their seasonal distributions. Using an island-wide landcover map, I tested for preference or avoidance hydroelectric corridors in each of 4 seasons using the Euclidean Distance habitat selection technique at the extent of the population ranges (broad scale) for each decade (1980s, 1990s, 2000s). I also examined the distribution of caribou ≤10 km and ≤20 km from corridors (narrow scale) for five herds. At the broad scale, the response was highly variable. Female caribou were most likely to avoid corridors during the 1980s, but they often exhibited little aversion, even preference for corridors, particularly in the 1990s and 2000s. Hydroelectric corridors, therefore, did not appear to be limiting at this scale. I surmise that these long-term shifts reflect the heightened density-dependent food limitation for Newfoundland caribou. At the narrow scale, avoidance of corridors was common – typically, a 50% reduction in use within 2-5 km of the corridor. Consistent with the broad scale, caribou exhibited the strongest tendency for avoidance in the 1980s compared to subsequent decades. Understanding space-use remains central to the study of caribou ecology. Hydroelectric lines in Newfoundland tended to coincide with other anthropogenic features. Cumulative effects must be considered to understand the full range of effects by human developments on caribou. Author Keywords: Caribou, distribution, habitat, hydroelectric, Newfoundland, Rangifer tarandus
Assessing the population genetic structure of the endangered Cucumber tree (Magnolia acuminata) in southwestern Ontario using nuclear and chloroplast genetic markers.
Magnolia acuminata (Cucumber tree) is the only native Magnolia in Canada, where it is both federally and provincially listed as endangered.Magnolia acuminata in Canada can be found inhabiting pockets of Carolinian forest within Norfolk and Niagara regions of southwestern Ontario. Using a combination of nuclear and chloroplast markers, this study assessed the genetic diversity and differentiation of M. acuminata in Canada, compared to samples from the core distribution of this species across the United States. Analyses revealed evidence of barriers to dispersal and gene flow among Ontario populations, although genetic diversity remains high and is in fact comparable to levels of diversity estimated across the much broader range of M. acuminata in the USA. When examining temporal differences in genetic diversity, our study found that seedlings were far fewer than mature trees in Ontario, and in one site in particular, diversity was lower in seedlings than that of the adult trees. This study raises concern regarding the future viability of M. acuminata in Ontario, and conservation managers should factor in the need to maintain genetic diversity in young trees for the long-term sustainability of M. acuminata in Ontario. Author Keywords: conservation genetics, cpDNA, forest fragmentation, Magnolia acuminata, microsatellites, population genetic structure
Temperature effects on the routine metabolic rates of brook trout (Salvelinus fontinalis) eggs, alevin and fry
Early developmental stages of cold-adapted ectotherms such as brook trout (Salvelinus fontinalis) are at risk of mortality with increasing water temperatures because of their sensitivity to changes in their environment. I studied the mass and routine metabolic rate (RMR) of wild-origin brook trout eggs, alevin and young fry reared at normal (5°C) and elevated (9°C) temperatures for the duration of the study or at mismatched temperatures. This setup determined if preconditioning acclimation for one temperature benefits or hinders the organism later in life. Three levels of biological organization (ancestry, population, family) were studied using Akaike’s Information Criterion (AIC) to identify models that best accounted for variation in the data. Family, mass and temperature were most important in predicting body mass and mass-adjusted RMR, although population and ancestral-level differences were also detected at some life stages. Strong variation in body mass and mass-adjusted RMR among families may indicate adaptive potential within brook trout populations to respond to increases in water temperature with climate change. Author Keywords: Acclimation, AIC, Brook trout (Salvelinus fontinalis), Environmental matching, Routine metabolic rate, Temperature
Habitat Characteristics, Density Patterns and Environmental Niches of Indo-Pacific Humpback Dolphins (Sousa chinensis) of the Pearl River Estuary and Eastern Taiwan Strait
The purpose of this thesis is to quantify the habitat characteristics, density patterns and environmental niches of two groups of Indo-Pacific humpback dolphins: Chinese white dolphins (CWD) of the Pearl River estuary (PRE), and Taiwanese white dolphins (TWD, =Taiwanese humpback dolphin, THD) found in the eastern Taiwan Strait (ETS). Much work has already been done on the habitat use of CWDs in parts of the PRE, so the purpose of my first two chapters was to advance knowledge of the TWD to a comparable level. Chapter 2 contains the first published description of the relatively shallow, inshore, estuarine habitat of the TWD. General environmental characteristics and observed group sizes were consistent with other populations of humpback dolphins, and group sizes were not correlated with the environmental variables measured during surveys. Chapter 3 investigated density patterns of TWDs, finding spatiotemporal heterogeneity across the study area. Humpback dolphin densities fluctuated from year to year, but some parts of the study area were consistently used more than others. Environmental characteristics again did not influence dolphin densities, though more dolphins than expected were sighted in waters adjacent to major land reclamations, which may be related to the location of these areas close to major rivers. In Chapter 4, niches of the TWD and CWDs found in the PRE were compared using species distribution models, which indicated significant niche overlap. This may be due to niche conservatism maintaining similar fundamental niches between the two groups since their historical split >10,000 years ago, or a result of the intrinsic biotic factors that influence occurrence data affecting the hypervolume dimensions of each realized niche in similar ways. Geographic predictions indicate that most of the TWD’s range has likely been surveyed, and that there may be connectivity between PRE humpback dolphins and at least one neighbouring putative population due to continuous predicted suitable habitat in waters that remain poorly surveyed. Overall, my thesis demonstrates that density patterns may vary over time, but on a broad temporal scale, these two allopatric groups of Indo-Pacific humpback dolphins have similar habitat requirements in geographically isolated, but environmentally similar locations. Author Keywords: density, habitat, Indo-Pacific humpback dolphin, niche overlap, Sousa chinensis, species distribution model

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Conservation biology
  • (-) ≠ Feltham, Joshua V.

Filter Results

Date

2004 - 2024
(decades)
Specify date range: Show
Format: 2024/03/28

Degree Discipline