Graduate Theses & Dissertations

Pages

Utilizing Class-Specific Thresholds Discovered by Outlier Detection
We investigated if the performance of selected supervised machine-learning techniques could be improved by combining univariate outlier-detection techniques and machine-learning methods. We developed a framework to discover class-specific thresholds in class probability estimates using univariate outlier detection and proposed two novel techniques to utilize these class-specific thresholds. These proposed techniques were applied to various data sets and the results were evaluated. Our experimental results suggest that some of our techniques may improve recall in the base learner. Additional results suggest that one technique may produce higher accuracy and precision than AdaBoost.M1, while another may produce higher recall. Finally, our results suggest that we can achieve higher accuracy, precision, or recall when AdaBoost.M1 fails to produce higher metric values than the base learner. Author Keywords: AdaBoost, Boosting, Classification, Class-Specific Thresholds, Machine Learning, Outliers
Time Series Algorithms in Machine Learning - A Graph Approach to Multivariate Forecasting
Forecasting future values of time series has long been a field with many and varied applications, from climate and weather forecasting to stock prediction and economic planning to the control of industrial processes. Many of these problems involve not only a single time series but many simultaneous series which may influence each other. This thesis provides methods based on machine learning of handling such problems. We first consider single time series with both single and multiple features. We review the algorithms and unique challenges involved in applying machine learning to time series. Many machine learning algorithms when used for regression are designed to produce a single output value for each timestamp of interest with no measure of confidence; however, evaluating the uncertainty of the predictions is an important component for practical forecasting. We therefore discuss methods of constructing uncertainty estimates in the form of prediction intervals for each prediction. Stability over long time horizons is also a concern for these algorithms as recursion is a common method used to generate predictions over long time intervals. To address this, we present methods of maintaining stability in the forecast even over large time horizons. These methods are applied to an electricity forecasting problem where we demonstrate the effectiveness for support vector machines, neural networks and gradient boosted trees. We next consider spatiotemporal problems, which consist of multiple interlinked time series, each of which may contain multiple features. We represent these problems using graphs, allowing us to learn relationships using graph neural networks. Existing methods of doing this generally make use of separate time and spatial (graph) layers, or simply replace operations in temporal layers with graph operations. We show that these approaches have difficulty learning relationships that contain time lags of several time steps. To address this, we propose a new layer inspired by the long-short term memory (LSTM) recurrent neural network which adds a distinct memory state dedicated to learning graph relationships while keeping the original memory state. This allows the model to consider temporally distant events at other nodes without affecting its ability to model long-term relationships at a single node. We show that this model is capable of learning the long-term patterns that existing models struggle with. We then apply this model to a number of real-world bike-share and traffic datasets where we observe improved performance when compared to other models with similar numbers of parameters. Author Keywords: forecasting, graph neural network, LSTM, machine learning, neural network, time series
Support Vector Machines for Automated Galaxy Classification
Support Vector Machines (SVMs) are a deterministic, supervised machine learning algorithm that have been successfully applied to many areas of research. They are heavily grounded in mathematical theory and are effective at processing high-dimensional data. This thesis models a variety of galaxy classification tasks using SVMs and data from the Galaxy Zoo 2 project. SVM parameters were tuned in parallel using resources from Compute Canada, and a total of four experiments were completed to determine if invariance training and ensembles can be utilized to improve classification performance. It was found that SVMs performed well at many of the galaxy classification tasks examined, and the additional techniques explored did not provide a considerable improvement. Author Keywords: Compute Canada, Kernel, SDSS, SHARCNET, Support Vector Machine, SVM
Self-Organizing Maps and Galaxy Evolution
Artificial Neural Networks (ANN) have been applied to many areas of research. These techniques use a series of object attributes and can be trained to recognize different classes of objects. The Self-Organizing Map (SOM) is an unsupervised machine learning technique which has been shown to be successful in the mapping of high-dimensional data into a 2D representation referred to as a map. These maps are easier to interpret and aid in the classification of data. In this work, the existing algorithms for the SOM have been extended to generate 3D maps. The higher dimensionality of the map provides for more information to be made available to the interpretation of classifications. The effectiveness of the implementation was verified using three separate standard datasets. Results from these investigations supported the expectation that a 3D SOM would result in a more effective classifier. The 3D SOM algorithm was then applied to an analysis of galaxy morphology classifications. It is postulated that the morphology of a galaxy relates directly to how it will evolve over time. In this work, the Spectral Energy Distribution (SED) will be used as a source for galaxy attributes. The SED data was extracted from the NASA Extragalactic Database (NED). The data was grouped into sample sets of matching frequencies and the 3D SOM application was applied as a morphological classifier. It was shown that the SOMs created were effective as an unsupervised machine learning technique to classify galaxies based solely on their SED. Morphological predictions for a number of galaxies were shown to be in agreement with classifications obtained from new observations in NED. Author Keywords: Galaxy Morphology, Multi-wavelength, parallel, Self-Organizing Maps
SPAF-network with Saturating Pretraining Neurons
In this work, various aspects of neural networks, pre-trained with denoising autoencoders (DAE) are explored. To saturate neurons more quickly for feature learning in DAE, an activation function that offers higher gradients is introduced. Moreover, the introduction of sparsity functions applied to the hidden layer representations is studied. More importantly, a technique that swaps the activation functions of fully trained DAE to logistic functions is studied, networks trained using this technique are reffered to as SPAF-networks. For evaluation, the popular MNIST dataset as well as all \(3\) sub-datasets of the Chars74k dataset are used for classification purposes. The SPAF-network is also analyzed for the features it learns with a logistic, ReLU and a custom activation function. Lastly future roadmap is proposed for enhancements to the SPAF-network. Author Keywords: Artificial Neural Network, AutoEncoder, Machine Learning, Neural Networks, SPAF network, Unsupervised Learning
Representation Learning with Restorative Autoencoders for Transfer Learning
Deep Neural Networks (DNNs) have reached human-level performance in numerous tasks in the domain of computer vision. DNNs are efficient for both classification and the more complex task of image segmentation. These networks are typically trained on thousands of images, which are often hand-labelled by domain experts. This bottleneck creates a promising research area: training accurate segmentation networks with fewer labelled samples. This thesis explores effective methods for learning deep representations from unlabelled images. We train a Restorative Autoencoder Network (RAN) to denoise synthetically corrupted images. The weights of the RAN are then fine-tuned on a labelled dataset from the same domain for image segmentation. We use three different segmentation datasets to evaluate our methods. In our experiments, we demonstrate that through our methods, only a fraction of data is required to achieve the same accuracy as a network trained with a large labelled dataset. Author Keywords: deep learning, image segmentation, representation learning, transfer learning
Predicting Irregularities in Arrival Times for Toronto Transit Buses with LSTM Recurrent Neural Networks Using Vehicle Locations and Weather Data
Public transportation systems play important role in the quality of life of citizens in any metropolitan city. However, public transportation authorities face criticisms from commuters due to irregularities in bus arrival times. For example, transit bus users often complain when they miss the bus because it arrived too early or too late at the bus stop. Due to these irregularities, commuters may miss important appointments, wait for too long at the bus stop, or arrive late for work. This thesis seeks to predict the occurrence of irregularities in bus arrival times by developing machine learning models that use GPS locations of transit buses provided by the Toronto Transit Commission (TTC) and hourly weather data. We found that in nearly 37% of the time, buses either arrive early or late by more than 5 minutes, suggesting room for improvement in the current strategies employed by transit authorities. We compared the performance of three machine learning models, for which our Long Short-Term Memory (LSTM) [13] model outperformed all other models in terms of accuracy. The error rate for LSTM model was the lowest among Artificial Neural Network (ANN) and support vector regression (SVR). The improved accuracy achieved by LSTM is due to its ability to adjust and update the weights of neurons while maintaining long-term dependencies when encountering new stream of data. Author Keywords: ANN, LSTM, Machine Learning
Machine Learning Using Topology Signatures For Associative Memory
This thesis presents a technique to produce signatures from topologies generated by the Growing Neural Gas algorithm. The generated signatures have the following characteristics: The signature's memory footprint is smaller than the "real object" and it represents a point in the n x m multidimensional space. Signatures can be compared based on Euclidean distance and distances between signatures provide measurements of differences between models. Signatures can be associated with a concept and then be used as a learning step for a classification algorithm. The signatures are normalized and vectorized to be used in a multidimensional space clustering. Although the technique is generic in essence, it was tested by classifying alphabet and numerical handwritten characters and 2D figures obtaining a good accuracy and precision. It can be used for many other purposes related to shapes and abstract typologies classification and associative memory. Future work could incorporate other classifiers. Author Keywords: Associative memory, Character recognition, Machine learning, Neural gas, Topological signatures, Unsupervised learning
Historic Magnetogram Digitization
The conversion of historical analog images to time series data was performed by using deconvolution for pre-processing, followed by the use of custom built digitization algorithms. These algorithms have been developed to be user friendly with the objective of aiding in the creation of a data set from decades of mechanical observations collected from the Agincourt and Toronto geomagnetic observatories beginning in the 1840s. The created algorithms follow a structure which begins with pre-processing followed by tracing and pattern detection. Each digitized magnetogram was then visually inspected, and the algorithm performance verified to ensure accuracy, and to allow the data to later be connected to create a long-running time-series. Author Keywords: Magnetograms
Fraud Detection in Financial Businesses Using Data Mining Approaches
The purpose of this research is to apply four methods on two data sets, a Synthetic dataset and a Real-World dataset, and compare the results to each other with the intention of arriving at methods to prevent fraud. Methods used include Logistic Regression, Isolation Forest, Ensemble Method and Generative Adversarial Networks. Results show that all four models achieve accuracies between 91% and 99% except Isolation Forest gave 69% accuracy for the Synthetic dataset. The four models detect fraud well when built on a training set and tested with a test set. Logistic Regression achieves good results with less computational eorts. Isolation Forest achieve lower results accuracies when the data is sparse and not preprocessed correctly. Ensemble Models achieve the highest accuracy for both datasets. GAN achieves good results but overts if a big number of epochs was used. Future work could incorporate other classiers. Author Keywords: Ensemble Method, GAN, Isolation forest, Logistic Regression, Outliers
Exploring the Scalability of Deep Learning on GPU Clusters
In recent years, we have observed an unprecedented rise in popularity of AI-powered systems. They have become ubiquitous in modern life, being used by countless people every day. Many of these AI systems are powered, entirely or partially, by deep learning models. From language translation to image recognition, deep learning models are being used to build systems with unprecedented accuracy. The primary downside, is the significant time required to train the models. Fortunately, the time needed for training the models is reduced through the use of GPUs rather than CPUs. However, with model complexity ever increasing, training times even with GPUs are on the rise. One possible solution to ever-increasing training times is to use parallelization to enable the distributed training of models on GPU clusters. This thesis investigates how to utilise clusters of GPU-accelerated nodes to achieve the best scalability possible, thus minimising model training times. Author Keywords: Compute Canada, Deep Learning, Distributed Computing, Horovod, Parallel Computing, TensorFlow
Educational Data Mining and Modelling on Trent University Students’ Academic Performance
Higher education is important. It enhances both individual and social welfare by improving productivity, life satisfaction, and health outcomes, and by reducing rates of crime. Universities play a critical role in providing that education. Because academic institutions face resource constraints, it is thus important that they deploy resources in support of student success in the most efficient ways possible. To inform that efficient deployment, this research analyzes institutional data reflecting undergraduate student performance to identify predictors of student success measured by GPA, rates of credit accumulation, and graduation rates. Using methods of cluster analysis and machine learning, the analysis yields predictions for the probabilities of individual success. Author Keywords: Educational data mining, Students’ academic performance modelling

Pages

Search Our Digital Collections

Query

Enabled Filters

  • (-) = Computer science

Filter Results

Date

2012 - 2022
(decades)
Specify date range: Show
Format: 2022/09/25

Degree